

A Shortcut to Estimating Non-Functional Requirements?

Architecture Driven Estimation as the Key to Good Cost Predictions

F.W. Vogelezang
METRI IT Benchmarking

the Netherlands
frank.vogelezang@metrigroup.com

E. van der Vliet
CGI

the Netherlands
eric.van.der.vliet@cgi.com

R. Nijland
Capgemini

the Netherlands
rene.nijland@capgemini.com

E.R. Poort
CGI

the Netherlands
eltjo.poort@cgi.com

H.R.J. Mols
Capgemini

the Netherlands
harry.mols@capgemini.com

J. de Vries
Ordina

the Netherlands
jelle.de.vries@ordina.nl

ABSTRACT
Non-Functional Requirements determine a significant amount of
the cost and effort that are needed to realize or maintain a
software engineering solution. Yet the effect of Non-Functional
Requirements on cost and effort estimates is largely
underexposed in Software Engineering research.

A few estimating solutions have been proposed but yield
unsatisfactory predictive power or lack a theoretical foundation
of their mechanisms. From our earlier research on packaged
software estimation we have derived that the basic mechanisms
that drive the estimation of cost and effort from both Functional
and Non-Functional Requirements are more complex than the
currently proposed methods.

In this paper we present why in most cases only Architecture
Driven Estimation mechanisms can lead to good cost predictions
and we explain why current estimating solutions are
unsuccessful.

CCS CONCEPTS
• General and reference → Cross-computing tools and
techniques → Estimation

─────────────────────────────

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

IWSM/Mensura '17, October 25–27, 2017, Gothenburg, Sweden
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-4853-9/17/10…$15.00
https://doi.org/10.1145/3143434.3143440

KEYWORDS
Non-Functional Requirements, Project Requirements, Project
Constraints, Cost Estimation, Effort Estimation, Architecture,
Architecture Driven Estimation, Cost driver, Size driver,
Productivity driver, Size-independent cost

1 INTRODUCTION
Software system estimating approaches that are based on
functional size measurement methods like COSMIC give
guidance on how to estimate the cost of fulfilling NFRs [1].
COSMIC and other functional size based approaches use a factor
to convert functional size to effort (in this paper, we will refer to
this factor as “productivity” for ease of reading; other possible
terms are “benchmark figure”, “conversion factor” or similar).
These estimating approaches specify that a single productivity
factor should be used for each functional component that has
different project characteristics, and that this productivity factor
is determined by project characteristics like the NFRs and
technology profiles of the project that is being estimated [1] [2].
In practice, the total size of all functional components is
commonly used as the functional size of the total system and
thus the project characteristics have to apply to the total
functional size.
This practice presents a conundrum for estimators of many
modern, component-based software systems. The majority of
systems we currently see in our daily practice cannot be
characterized by a single NFR or technology profile. We call
them heterogeneous solutions, because they consist of
components that each have their own NFR profile. These
differences between NFR profiles within a single system can be
caused by differences in technology, complexity or any other
factor that influences the productivity factor of a single
component. Modern architectural styles like micro-services

IWSM 2017 F.W. Vogelezang et al.

2

actively promote such diversity of technology in software
systems in order to allow local optimization of loosely coupled
components [3]. In our experience, heterogeneous solutions are
becoming the norm, and we need estimating standards that
facilitate this.
The key to analyzing the impact of NFRs on software systems
estimation is the system’s architecture. The architecture
determines substantially whether a system is able to exhibit its
desired (or required) quality attributes. Architectural patterns,
tactics and styles are applied to enable specific sets of quality
attributes [4]. Architectural decisions can add functionality to
fulfill NFRs, and architectural decisions set the system’s
technology profile, which co-determines the productivity
factor(s) [5]. In this time of heterogeneous software systems,
there is no shortcut around the architecture to estimate the cost
of fulfilling NFRs. It is time to make architecture a first class
citizen in software estimating standards.

2 NON-FUNCTIONAL REQUIREMENTS IN
THE COSMIC METHOD

In 2015 the Common Software Measurement International
Consortium (COSMIC) published a document on how to consider
non-functional and project requirements in software project
performance measurement, benchmarking and estimating [2].
This document defines the various types of requirements and
gives guidance on how these can be translated into cost:

Figure 1: Transformation of requirements to cost in [2]

As can be seen from figure 1, the NFRs impact the cost estimate
in three ways: by affecting (increasing) the functional size, by
affecting the productivity factor for each functional component
and by adding costs that are not related to software production,
like hardware and training. All three of these impacts are
determined by architecture:

• NFR-related increase of functional size is caused by
architectural decisions to fulfill these NFRs by adding
functionality. NFRs are fulfilled by applying
architectural patterns, styles and tactics that introduce
new functionality to the system. Examples are fulfilling
a security NFR by adding authentication functionality,
or improving response times by adding caching
functionality. An extensive list of these tactics and how
they are related to NFRs can be found in [4].

• NFR-related impact on productivity is caused by
architectural decisions to use certain technologies
(such as programming languages) or architectural
styles that do not add functionality, but impact
productivity, e.g. by enforcing a certain way of
working. Examples are the choice to implement
functionality in Python, or the decision to use only
RESTful interfaces to improve modifiability.

• Other NFR-related costs are also determined largely by
architectural decisions, such as a choice of vendor, the
decision to use specialized hardware appliances (e.g. to
increase performance), or selection of a deployment
platform with its associated costs (e.g. to fulfill a
scalability NFR).

In short, architecture is an implicit part of this mechanism to
account for NFRs.
The calculation depicted in Figure 1 can be formulated as
follows:

𝐶 = ∑ 𝐹𝑥 ∙ 𝑃𝑥 ∙ 𝑅𝑥

𝑥 ∈ 𝑆

+ ∑ 𝑛𝑦 ∙ 𝑟𝑦

𝑦 ∈ 𝑇

+ 𝑂

where
C is the total project cost
S is the set of functional components in the project to
deliver the Functional User Requirements
Fx is the functional size of functional component x
Px is the productivity factor of functional component x
Rx is the (average) staff rate of functional component x
T is the set of deliverable elements added to the project
to fulfill “true” NFRs
ny is the size or count of deliverable element y
ry is the unit cost per size element of type y
O is the project overhead

The project overhead in the COSMIC method is defined by the
Project Requirements & Constraints (PRC). The PRC are defined
as: "Requirements that define how a software system project
should be managed and resourced or constraints that affect its
performance" [2].
PRC can affect an estimate in various ways, e.g.:

• a time constraint may result in a de-scoping exercise or by
adding more staff to work in parallel, at the expense of
lower productivity.

• low staff experience in a new technology may increase
effort.

• an uplift on staff rates, or an uplift to cover the cost of
support activities like a project management office or
database management, in which case it is a multiplying
factor, not an addition.

From the COSMIC perspective there are not likely to be direct
effects of architecture on PRC factors. Architecture factors affect
the product, PRC factors affect the project.

Estimating Non-Functional Requirements IWSM 2017, October 2017, Göteborg, Sweden

 3

3 NON-FUNCTIONAL REQUIREMENTS IN
THE EPA METHOD

In 2012 three of the authors proposed a framework to estimate
the implementation cost of packaged applications [6]. In 2016 the
full version was published as a Nesma guideline on Estimating
Packaged Applications (EPA) [7]. This framework defines the
various types of cost drivers in the different life-cycle stages of
the implementation of packaged software and gives guidance on
how these can be translated into cost:

Figure 2: EPA Cost Estimating Model

As can be seen from figure 2, all three ways in which NFRs can
impact the cost estimate as described in the previous section are
present in a more or less similar way.
The way in which size is defined in the EPA framework means
that size can be related to either functional or non-functional
requirements. Examples of size drivers in the EPA framework
include: workshops, key-users, data conversions and modules.
Non-functional requirements also play a role in the productivity
drivers that are defined in the model.
The calculation depicted in Figure 2 can be formulated as
follows:

𝐶 = (∑ 𝑃𝑥

𝑥∈ 𝑄

) ∙ ∑ 𝐹𝑦 ∙ 𝐷𝑦 ∙ 𝑅𝑦

𝑦 ∈ 𝑆

+ ∑ 𝑛𝑧 ∙ 𝑟𝑧

𝑧 ∈ 𝑇

+ 𝑂

where

C is the total project cost
Q is the set of productivity drivers of the project
Px is the productivity driver of activity x
S is the set of functional components in the project to
deliver the Functional User Requirements
Fy is the functional size of functional component y
Dy is the delivery rate of functional component y
Ry is the (average) staff rate of functional component y
T is the set of deliverable elements added to the project
to fulfill “true” NFRs
nz is the size or count of size-independent element z
rz is the unit cost per element of type z
O is the size independent cost

4 NON-FUNCTIONAL REQUIREMENTS IN
THE SNAP METHOD

In 2010 the International Function Point User Group (IFPUG)
published the first version of the Software Non-functional
Assessment Process (SNAP) on how to consider non-functional
requirements in software estimating [6].

While function point analysis (FPA) measures the functional
requirements by sizing the data flow through a software appli-
cation, SNAP measures the non-functional requirements. The
SNAP model consists of four categories and fourteen sub-
categories to measure the non-functional requirements. Each
sub-category is sized, and the size of a requirement is the sum of
the sizes of its sub-categories.
SNAP is complementary to the standard functional size approach
and both measures have to be translated to effort and cost
separately [9]:

𝐶 = 𝐹 ∙ 𝑃𝑓 ∙ 𝑅𝑓 + 𝑁 ∙ 𝑃𝑛 ∙ 𝑅𝑛
where

C is the total project cost
F is the size of the functional requirements
Pf is the productivity factor for the functional reqs
Rf is the (average) staff rate for the functional reqs
N is the size of the non-functional requirements
Pn is the productivity factor for the non-functional
requirements
Rn is the (average) staff rate for the non-functional
requirements

As can be derived from the equation, this is a different approach
to measuring the impact of NFRs than is described in the
previous sections. Functional size is considered to be fixed and
all NFRs are measured in a single size number with its own
productivity factor. Project Requirements & Constraints are not
measured by both FPA and SNAP [9].
A 2013 field test showed a weak correlation (R2=.41) between
effort and the functional and non-functional size. By excluding
applications with extensive help functionality and recalibrating
the subcategory Data Configuration the correlation was
improved drastically (R2=.89) [8]. This statistics-based
improvement of the method had large repercussions on
individual contracts that used the SNAP method as a contract
base [9].
As mentioned in the introduction, the key issue with this
formula is the fact that there is only one productivity factor to be
applied to all functionality, and one to all non-functional
requirements, whereas most modern solutions are
heterogeneous and non-functional requirements are often
satisfied by functionality.
Solutions nowadays consist of multiple types of components,
which can differ substantially in terms of technology and NFRs,
requiring us to apply different productivity factors. Keeping
track of which effort is related to which type of requirement
(functional or non-functional) when one type is evolving into the
other as a project progresses is another challenge.

IWSM 2017 F.W. Vogelezang et al.

4

5 SOLUTION-BASED ESTIMATING
In 2014, two of the authors introduced the Solution Based
Estimation approach to estimate the cost of delivering
heterogeneous solutions [9]. Solution Based Estimation explicitly
makes the architecture part of the estimating process by way of
an architectural model called the Solution Breakdown Structure
(SBS).

Figure 3: Solution Breakdown Structure (example)

The Solution Breakdown Structure is the representation of the
solution that serves as a basis for cost estimation. It decomposes
a heterogeneous solution into homogeneous deliverable
elements, based on the architecture. These deliverable elements
are the tangible result of applying the architectural patterns,
styles and tactics applied to address NFRs; e.g. applying a hub-
and-spoke architectural style results in a deliverable element to
fulfill the ‘hub’ function, and applying a caching tactic to address
a response time NFR results in a deliverable element to fulfill the
‘cache’ function. Thus, the impact of NFRs on the structure of
the solution is made explicit. Cost calculation of each branch b in
the SBS tree is done by recursively adding the cost of each sub-
branch or leaf, and adding the integration overhead for that
branch, or:

𝑐(𝑏) = ∑ 𝑐(𝑥)

𝑥 ∈ 𝑏

+ 𝑂𝑏

where
c(b) is the cost of delivering branch b
c(x) is the cost of delivering sub-branch or leaf x of b
Ob is the integration overhead to integrate b

In a good SBS the leaves in the SBS tree are homogeneous (this is
an important condition of a good SBS), allowing the use of sizing
techniques for estimating homogeneous elements, such as
functional size for software elements, square footage and power
for hardware hosting, number of FTEs for organizational entities,
or NFRs like bandwidth, storage and computing capacity for
infrastructure [10]:

𝑐(𝑙) = 𝑆𝑙 ∙ 𝑅𝑙

Where Sl is some measure of the size of leaf l, and Rl is the unit
cost.

In software systems, some of the leaves will be pieces of
software, with functionality that is either an implementation of

direct Functional Requirements, or the result of an architectural
decision to address an NFR. When the leaf is a homogeneous
piece of software, we can use functional size to estimate its cost,
substituting S for F · P:

𝑐(𝑙) = 𝐹𝑙 · 𝑃𝑙 · 𝑅𝑙

We can now see that the COSMIC formula from [2] is actually a
special case of our Solution Based Estimating formula:

Figure 4: Special case of Solution Based Estimating

Figure 4 shows that the method proposed in [2] is equivalent to
Solution Based Estimating for a software system where all
software can be estimated as a number of homogeneous
deliverable elements.
The same analysis of the EPA formula shows that this method is
equivalent to Solution Based Estimating for a software system
where the productivity driver is equally applicable to all sizeable
elements.
The same analysis of the FPA+SNAP formula shows that this is
equivalent to a unique case of the Solution Based Estimating
formula, where the Solution Breakdown Structure consists of
one homogeneous software element, one homogeneous NFR
element and an overhead equal to zero.

6 DISCUSSION
The role of architecture in addressing NFRs has been firmly
established for decades; for example, in the 90s Lawrence
Chung’s NFR Framework [11] provided a ‘Goal-driven, process-
oriented architectural design’ method based on NFRs. More
recently, Raymond Slot’s PhD research into 49 software
development projects found significant positive correlations
between the application of architecture practices and the
accuracy of project budget calculations. Slot specifically found
that both the presence of an architect and the presence of a high-
quality project architecture during the calculation of the
technical price of solution are significantly correlated with a
lower variance of the actual project budget [12]. Slot’s finding is
fully in line with our reasoning that budget estimates that take
into account the architectural structure of a software system
tend to be more accurate than those that don’t.
Architectural decisions to address NFRs often represent choices
between alternatives that each carry their own costs. These
discrete choices cause discontinuities in the relationship between
quantified NFR values and the cost of realizing them, leading to a
very critical relationship between NFRs and costs that can only
be understood by looking at the architecture [16].

Estimating Non-Functional Requirements IWSM 2017, October 2017, Göteborg, Sweden

 5

7 CONCLUSION
Sophisticated architecture based software and its associated NFR
in a system cannot be estimated using the same productivity
factor for all architecture components. Therefore we need a
more advanced model to account for the cost of NFRs. Solution-
Based Estimating [9] is an approach that was proven in practice,
which provides a candidate for such a more advanced model. For
the software part of Architecture Driven Estimation, the
COSMIC method offers a compatible approach. For
heterogeneous solutions, Architecture Driven Estimation
facilitates accounting for the impact of NFRs by explicitly
including the architecture in the calculation.
There is no shortcut to estimating non-functional requirements
by using homogeneous productivity factors. Approaches that
bypass the heterogeneous nature of today's software systems
will not lead to accurate cost predictions. Architecture Driven
Estimation makes architecture a first class citizen, allowing more
accurate cost predictions for modern software systems.

8 FUTURE WORK
The finding that only by taking the architecture into account we
can make accurate cost predictions, means that there is still a lot
of work to do.
First we have to reconsider homogeneous approaches that are
widely used, like using one productivity factor for all types of
software or for all types of non-functional requirements.
Then we need to standardize as much as possible the 'size'
measures for NFRs and their associated productivity factors.
Some exploratory work, like [2] and [7], has already been done,
but these are only frameworks that need to become more
concrete to be applicable by practitioners. This would be a
logical extension of the much used publicly available ISBSG
dataset [17].
We also need to establish how to calculate integration cost. This
is still a Greenfield situation with respect to academic research.

REFERENCES

[1] C. Symons, "Accounting for Non-Functional Requirements
in Productivity Measurement, Benchmarking & Estimating,"
in UKSMA/COSMIC International Conference on Software
Metrics & Estimating, London, 2011.

[2] C. Symons, "Guideline on Non-Functional & Project
Requirements," COSMIC, 2015.

[3] C. Richardson, "Pattern: Microservice Architecture," 2016.
[Online]. Available: http://microservices.io/patterns/
microservices.html. [Accessed 25 June 2017].

[4] L. Bass, P. Clements and R. Kazman, Software Architecture
in Practice (3rd Edition), Addison-Wesley Professional,
2012.

[5] J. Tyree and A. Akerman, "Architecture decisions:
Demystifying architecture.," IEEE Software, pp. 19-27, 22(2)
2005.

[6] F. Vogelezang, R. Nijland, E. van der Vliet, J. Hommes, H.
Smit, K. van Straaten, D. Vandendaele and P. Bellen,
"Estimating Packaged Software Implementations - The first
part of a framework," in International Workshop on Software
Measurement, Assisi, 2012.

[7] E. v. d. Vliet, F. Vogelezang and R. Nijland, "Estimating
Packaged Software – a framework," in NESMA, 2016.

[8] IFPUG, "SNAP (Software Non-Functional Assessment
Process) APM v2.2," IFPUG, 2014.

[9] T. Ben-Cnaan and C. Symons, "Accounting for Non-‐
Functional and Project Requirements in Software Project
Performance Measurement, Benchmarking and Estimating:
COSMIC and IFPUG Developments," in International
Workshop on Software Measurement, Cracow, 2015.

[10] C. Tichenor, "A New Metric to Complement Function Points
The Software Non-functional Assessment Process (SNAP),"
CrossTalk - The Journal of Defense Software Engineering,
July/August 2013,, no. July/August, pp. 21-26, 2013.

[11] M. Krzetowski, "Metoda SNAP jako próba przezwyciężenia
problemów z wymiarowaniem wymagań
niefunkcjonalnych," in PSMO Conference on Project
Estimation based on Functional Size, Warsaw, 2017.

[12] E. Poort and E. van der Vliet, "Estimating the Cost of
Heterogeneous Solutions," in Softw. Measurement and Intl
Conf. on Softw. Process and Product Measurement (IWSM-
MENSURA), 2014 Joint Conf. of Intnl Workshop on,
Rotterdam, 2014.

[13] E. Poort and E. van der Vliet, "Architecting in a Solution
Costing Context: Early Experiences with Solution-Based
Estimating," in Software Architecture (WICSA), 12th Working
IEEE/IFIP Conference on, 2015.

[14] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Springer,
1999.

[15] R. Slot, A method for valuing architecture-based business
transformation and measuring the value of solutions
architecture (PhD Thesis), Amsterdam: University of
Amsterdam, 2010.

[16] B. Regnell, R. Berntsson Svensson and T. Olsson,
"Supporting roadmapping of quality requirements," IEEE
Software, vol. 25, pp. 42-47, 2008.

[17] ISBSG, "The International Software Benchmarking
Standards Group," [Online]. Available:
http://www.isbsg.org. [Accessed 1 July 2017].

