
U S I N G N E S M A F U N C T I O N P O I N T A N A LY S I S I N A N A G I L E
C O N T E X T

roel van rijswijck

(0512362)

Supervisor: prof. dr. M.C.J.D. van Eekelen

Institute for Computing and Information Sciences
Faculty of Science

Radboud University Nijmegen

August 2013 – Thesis number: 188 IK

A B S T R A C T

The software development paradigm shift from waterfall-like meth-
ods to Agile development brings us a lot of benefits. The control of
scope, estimations and productivity measurements once useful for in-
cremental development, like Function Point Analysis (FPA) should be
able to cope with the paradigm shift as well. While some sizing ex-
perts attempt to solve it by introducing new sizing methods, FPA still
is widely used as the de facto standard for functional size measure-
ment. By combining principles used in the application of COSMIC
Full function points, as well as the early sizing and enhancement
project sizing as proposed by the Netherlands Software Metrics Asso-
ciation (NESMA), an attempt is made to use FPA in an Agile context.
After the principles of the Agile paradigm and functional software
sizing are discussed, a new combined approach called NESMA Agile
FPA (NAFPA) is presented as a method for project control and estima-
tions in Agile development. This method is applied in a case study to
give an indication of its usability in an agile context. This shows the
possibility to apply NESMA FPA in Agile environments, but cannot
give a definite answer on whether it is wise to do so. Furthermore it
will show some problems that are part of the method, and directs to
possible solutions that could help in the usage of NAFPA in software
development projects.

Thesis title: Using NESMA Function Point Analysis

in an Agile context

Supervisor: Prof. dr. M.C.J.D. van Eekelen

Second reader: Prof. dr. ir. Joost Visser

Institute: Institute for Computing and Information Sciences

Faculty: Faculty of Science

University: Radboud University Nijmegen (NL)

Case company: ISDC, Cluj-Napoca, Romania

External Supervisors: Ramona Muntean (Measurements and Best Practices)

Ovidiu Suta (Quality Assurance Manager)

1

Not everything that can be counted, counts
Not everything that counts can be counted.

—William Bruce Cameron, 1968
1

A C K N O W L E D G M E N T S

In this document you will find the master thesis I performed at ISDC
in Cluj-Napoca, Romania. It was an interesting journey in the world
of Function Point Analysis, but also a challenging one that demanded
concentration and quite some work. This would not have been pos-
sible without the help of some people. In this small personal note I
would like to thank them for their great help and the great time I had
because of them.

First and foremost there is my main thesis supervisor: Marko, who
in our (Skype) meetings, always managed to help me out when I was
stuck and get back to my focus. My second reader Joost. Ramona, my
main supervisor at ISDC, who became a good friend and made sure
that I got everything I needed to fulfill this project and that I had a
great time while doing so.

Furthermore at ISDC: first there were Cor, Theo and Anca, who
were willing to help me out by offering me a place in their great
company. Ovidiu, my second supervisor that helped me with setting
up the research . Ionel, who became an amazing FPA mentor and a
friend. Carmen, who was a big help in performing the case study and
my lunch break buddies Otilia and Attila.

Last but not least: Judit, who supported me along the way and
’moved’ me to Romania.

1 It is a common misconception that this quote is originally from Albert Einstein
as there are no known records of him ever have written or said this. However it
is for sure that this quote was published by William Bruce Cameron in his 1963

text “Informal Sociology: A Casual Introduction to Sociological Thinking” (informa-
tion obtained from: http://quoteinvestigator.com/2010/05/26/everything-counts-
einstein/)

2

 http://quoteinvestigator.com/2010/05/26/everything-counts-einstein/
 http://quoteinvestigator.com/2010/05/26/everything-counts-einstein/

C O N T E N T S

Introduction 5

1 introduction 6

1.1 Introduction: recap of the research project 6

1.2 Motivation . 6

1.3 Research question . 9

2 background 10

2.1 Function Point Analysis 10

2.2 Estimation . 11

2.3 The cone of uncertainty 12

2.4 Software Sizing . 13

2.5 Expert judgment . 25

2.6 SCRUM poker / story points 25

3 research method 27

3.1 Part 1: introducing a method for NESMA in Agile en-
vironments . 27

3.2 Part 2: Applying the method in an Agile environment 27

3.3 Case study . 28

i developing nesma agile fpa 30

4 difficulties when estimating agile and modern

software development projects 31

4.1 Difficulties specific to Agile Development 31

4.2 Non-functional requirements 33

4.3 Modern solutions . 33

5 expert judgment and scrum 35

5.1 Estimations . 35

5.2 Accounting for change 36

5.3 Non-functional requirements 36

5.4 Modern solutions . 37

6 using fpa combined with scrum 38

6.1 The beginning of a project: requirements before the
start. 38

6.2 Start of a Sprint: Sizing user stories 39

6.3 Start of a sprint: Sorting user stories. 43

6.4 During sprint: Changing requirements 46

7 fpa and non-functional requirements 50

7.1 NFR framework . 50

7.2 COSMIC NFSM . 51

7.3 Using the same principle for NESMA 52

8 modern day solutions 55

8.1 Application integration 55

8.2 Business intelligence . 55

8.3 Web Portal package implementation / Mobile develop-
ment . 56

3

9 part 1 : recap 58

ii applying nesma agile fpa 59

10 project and approach 60

10.1 Case project . 60

10.2 Approach . 60

11 estimations at start of project 62

11.1 Pre-sales . 62

11.2 Planning . 63

12 sizing during project 64

12.1 Sprint 1 . 64

12.2 Sprint 2 . 67

12.3 Sprint 3 . 69

12.4 User Acceptance Test (Sprint 4) 71

13 project end 73

13.1 Analysis using NESMA FPA 73

14 recap 77

iii validating nesma agile fpa 79

15 interpreting the results 80

15.1 Accuracy of estimations 80

15.2 Effort of estimations . 84

16 answer to the main research question 86

16.1 Suitability of NAFPA in Scrum. 86

16.2 Shortcoming of NESMA FPA for the use in agile envi-
ronments . 87

17 suggestions to solve shortcomings . 91

17.1 Guidelines for usage . 91

17.2 A different way of looking at enhancements 92

17.3 COSMIC FPP as possible alternative: 92

17.4 (Semi)-automated measurements 93

18 conclusion 95

18.1 Conclusion . 95

18.2 Discussion . 96

18.3 future research . 97

4

I N T R O D U C T I O N

5

1
I N T R O D U C T I O N

1.1 introduction : recap of the research project

This Master Thesis was started on request of ISDC, a professional
near-shoring software development company, that wanted to investi-
gate a uniform size measurement for their developed software. This
should be used for estimation and benchmarking purposes. The re-
search was originally proposed to compare the standard in SCRUM,
expert judgment with SCRUM poker, with functional sizing meth-
ods COSMIC and NESMA FPA. The latter was already used at ISDC.
While starting the investigation it became clear that in contradiction
to COSMIC and expert judgment with SCRUM poker, NESMA FPA
did not provide us with a way to handle Agile projects by default.
Therefore the research switched from the main comparison of the
three methods to the development of this method. Now that this is ex-
plained, the remainder of the document will focus on the research per-
formed in the end. All the activities performed in light of the initial
research question will be omitted. In this way the reader is presented
with a coherent document. Traces will still be found on COSMIC FPP,
due to the fact that principles and techniques proposed specifically
for COSMIC FPP are presented as possibilities to overcome difficul-
ties in the NESMA sizing method with regard to Agile environments.
COSMIC FPP will be a means to an end and not longer be part of
the goal. Later on COSMIC will still be presented as a possible other
path to follow, to achieve the same goal. Perhaps in an even better
way. Not only will this thesis give an answer to the question on how
to use NESMA FPA in an agile context, it will also analyze if it might
be worthwhile to use NESMA FPA in this context, and what could
be concluded from the information obtained after applying it. Due
to the nature of the project we used for the case study, which was
sometimes referred to as ’kamikaze’ project, a clear comparison be-
tween the method and SCRUM poker could not be made. Therefore
the thesis shifted again its focus from a strict comparison between the
method proposed and Expert Judgment with SCRUM poker to show-
ing the possibility of using functional size in a similar way. Finally,
it will also show what additional information can be obtained from
using NESMA FPA together with SCRUM.

1.2 motivation

Estimating software projects is as difficult as it is important. Every
client and supplier would like to know what a certain project is go-
ing to cost before starting development. Wrong estimations and IT
projects getting way over budget are common, making the develop-

6

ment of methods to improve estimations a crucial research area. This
has been topic of research since the 1960s already [22]. Even with all
this knowledge on good estimation methods a widely used approach
to estimating the effort of developing a software project is still expert
judgment. One or more experts are asked to estimate an entire project
in hours needed, based on their experience and knowledge with help
from certain tools and methods. One of the most commonly used
being, the Work Breakdown Structure (WBS) in which the project is
divided in small tasks, each estimated seperately.

SCRUM provides an own way of estimating effort. In Scrum poker
developers decide how much functionality (story points for user sto-
ries) they will finish in a certain amount of time (Sprint) based on the
relative sizes of the tasks. This is merely a short-term planning rit-
ual repeated for each sprint. For the entire project and estimate done
before development starts, often expert judgment is still the defacto
standard.

While the costs of software projects are mostly concentrated on
hours worked, the size of the software to be developed could be a
good measure for a baseline. This is not surprising. By comparison,
when you are planning on building a house, you would like to know
how big that house will be before estimating your budget. Further-
more, when a project takes more hours than estimated, a comparison
should be made to a baseline to determine if the extra hours are a
result of more functionality being delivered, or inefficient develop-
ment. This is hard to do when the scope is quantified in monetary or
hourly terms. However, different measures can be used to define the
size of a project. Lines of Code (LoC) are often used to define the size
of a software solution. However, LoC differ between programming
languages and developer styles, making it hard to compare projects.
Besides this, it is also not the ideal way to express efficiency and pro-
ductivity, as relating the amount of lines of codes to the productivity
might negatively influence the programming done in a project.

Function points could be a better measurement to this extent. They
provide a method to count functionality as a measure of size. After
all, when looking from the perspective of the client, the functionality
offered is what matters, not the lines of code to achieve that func-
tionality. In theory this metric should be uniform for all IT projects
worldwide, while in practice, the repeatability of the measurements
and their theortical validation is disputed, as was pointed out by
Meli [21]. Function points are counted on the requirements for the
project, which makes them difficult to measure with incomplete re-
quirements. In Agile development incomplete requirementes are a
rule rather than an exception. Changes occuring during the process
are also hard to take into account while estimating. Furthermore, tra-
ditional FPA methods like IFPUG and NESMA are developed to cope
with traditional administrative application development, which dif-
fers from new applications that are demanded of the industry at the
moment. These are products like web portals, business intelligence
solutions and mobile applications, for example.

7

COSMIC Full function points were introduced as a way to over-
come these difficulties. They are considered to be wider applicable
and easier to count. They are regarded as the second generation in
functional software sizing. FPA as proposed by NESMA and IFPUG
is still widely accepted as the default way to measure functional size.
COSMIC FFP is slowly increasing its userbase. Investigating whether
FPA as proposed by NESMA could be used in a way to handle these
difficulties, may provide companies with a way to continue functional
sizing without changing to COSMIC yet, or at all. COSMIC FFP and
FPA are different in nature, which means they can not be used in a
company at the same time, at least, if the goal is to compare those
differently sized projects.

Using a combination of SCRUM with FPA is not entirely new.
JeffSutherland et al. [28, 13]used velocity in function points de-

veloped by man/month to prove that distributed scrum can be suc-
cessful, they could not use story points to this extent, because these
were not comparable across teams. They argue that function points,
although not perfect, are still the best measurement to compare soft-
ware across teams. Jeff Sutherland is one of the originators of SCRUM.

Recently an article appeared on the combination of FPA with Scrum
in a dutch software magazine by Onvlee and van Solingen [25]also
they argued that there was added value in combining the two ap-
proaches. Furthermore COSMIC released a using COSMIC in agile
development guide, showing how Scrum was viewed through the
eyes of Software sizing experts.

Wide-band Delphi and software sizing estimation in early phases,
or incomplete requirements, which will be covered later, do not ex-
clude each other. When estimating you probably end up to a point
where discussions are helpful in making choices in assumptions. Ex-
perts debating on this and reaching consensus would probably help
the estimation process. The added value is that as a result they will
reach a conclusions which is quantifiable and easily translatable to
effort, given the fact that historical information will give an input es-
timate for an output. This is the way it should be, since the output is
unknown, but the general productivity in the company is known, it
is best to estimate the output, not the input. If the input gets bigger
than estimated, it is hard to defend that the output did as well, or that
it was a matter of lower productivity. If the output gets bigger than
estimated, it is easy to defend that this lead to an increase in input. If
the output is the same as estimated, it is easy to argue that the effort
increased by lower productivity.

These are all reasons why size could be a necessity in development.
This thesis will focus on estimations. Not only the estimate done at
the beginning, also at points during the development and will focus
on accuracy as well as the effort to do the estimations. All the facts
stated above show that this is something worth investigating.

To answer this, a new way of performing FPA based upon NESMA
is introduced: NESMA Agile FPA (NAFPA). This uses principles in-
troduced by COSMIC and is a natural evolution of the concepts al-
ready introduced by NESMA. NAFPA is tested in a case study by

8

applying it to a software development project done in SCRUM. This
will lead to certain measurements, difficulties and opportunities for
improvement that will be examined.

1.3 research question

This thesis will therefore answer the following question:
To what extent is using NESMA FPA in Agile environments an advan-

tage compared to using Expert judgment?
To come to a good answer the following research questions should

be answered:

• Q1: What are the difficulties in estimating software size with
regard to Agile development (with emphasis on SCRUM)?

• Q2: How can NESMA FPA be used to handle these difficulties?

• Q3: When comparing the technique proposed in Q2 with ex-
pert judgment, which one provides a company with better esti-
mates?

• Q4: How much effort does it take to use the methods in Q3?

• Q5: What can we learn about the project that we cannot find out
by using SCRUM?

9

2
B A C K G R O U N D

The background of the project will be on Software Development Man-
agement and more specifically on the sides of Software Estimation,
Software Sizing and therefore Software Metrics. On the other side the
context of these measurements will in Agile Development and more
specifically SCRUM. The relation between the terms discussed in this
thesis are made clear in figure 1, most of these terms will be explained
in this chapter. Furthermore we will discuss the cone of uncertainty,
one of the basic principles in estimating software projects. This cone
shows in which stages of the software development process which
deviations can be expected from the actual value when estimating.

Figure 1: The background of the research as visualized in a combination of
a Venn and Euler diagram.

Figure 1 Shows the background of the research, easily visualized
as a combination of an Venn and Euler diagram. Most of these terms
will be further explained in this section.

2.1 function point analysis

To take a software size measure independent of the Lines of Code and
the amount of hours, Albrecht thought of Function Points Analysis
in 1979 while working at IBM [14].

In the course of time, different methods for Function point analysis
evolved, which can be seen in figure 2. All five endnodes of the graph
obtained ISO certification.

10

Figure 2: The evolution of FPA methods, over time (Validated and taken
from the presentation ’Do We Really Need To Choose One Func-
tional Size Measurement Method?’ by Gencel as presented on the
UKSMA / COSMIC International Conference on Software Metrics &
Estimating held on 27-28 october 2011)

It is important to note that the difference between FISMA, IFPUG
and NESMA is so small that the values of all three can be easily
compared. Furthermore, MKII is lacks widely acceptance. Even its
founder, mr. Charles Symons at present time, in later years was lead-
ing COSMICON which developed the COSMIC method 1 COSMIC,
being relatively new is gaining ground. The data on its growth is lim-
ited since it sets itself apart from the other methods by making all doc-
umentation freely available. The downloads on the website show an
increase. COSMIC adressess shortcomings of the traditional methods
in a new way of looking at functional size and is therefore regarded as
the second generation of functional size measurement methods. We
have chosen one of the three comparable methods, NESMA, based
on the experience with this at the company where the case study is
taken place, as the basis of our new method.

2.2 estimation

When estimating a project, the focus is normally on the costs and ef-
fort. To determine this, a starting point is needed. This is often the
outcome of a project. It is clear that the expected outcome of a project
is related to the effort that needs to be done to complete the project.
To estimate and measure the outcome a baseline is required. An idea
for this baseline is the software size. When looking at some tradi-
tional methods, the estimations are done theoretically with the input
as baseline, since hours and story points are about the effort needed
to complete a task. However it makes more sense to base the project
progress on expected output. When taking into account the output as
well as the context of the project(variables like team maturity, team co-

1 Information gotten from the COSMICON website
http://www.cosmicon.com/presidentChairmanV3.asp . retrieved 19th of Au-
gust 2013

11

http://www.cosmicon.com/presidentChairmanV3.asp

hesion and number of reusable components) we get to a realistic and
argumented estimate of the required input which is required to that
goal. Therefore when talking about estimation it is important to go
from the goal to a methodical way from the expect result of a project
to the input required to get there. One way to do this is the Work-
Breakdown Structure. In this method a piece of work is broken down
into small tasks that are easier to estimate than the project as a whole.
Besides looking at the output and reasoning what could be the input
for this, look for analogies is another popular way of estimating. This
either done by benchmarking or experience. Although yielding quite
ok results, this is outside the scope of this research, partially due to
not having enough benchmarking info available in the environment
of the case study.

Regardless of the what estimation method is used, one cannot go
besides the fact that the longer you are away from finishing a project,
the harder it is to estimate how long it will take. To make this explicit,
the cone of uncertainty will be used to give some handles on how
estimations done during different stages in the development process
normally differ from the costs of a project in the end.

Figure 3: The cone of uncertainty as specified by Boehm.Boehm [3]

2.3 the cone of uncertainty

During a software development project estimating the total effort it
takes to complete the project gets easier with time. Boehm [3] made
this explicit in what he called, the cone of uncertainty which is the
relative graph shown in figure 3. It shows the relation between the
estimated value and the actual value in the end on chronological mo-
ments during a software development project. At the beginning this
can be expected to be around one fourth or four times the actual
value.

In this research estimations will be made a different times within
this scale. The cone of uncertainty makes sure there is a baseline to
compare the measurements at different times to.

12

As can be seen, estimating the software development project at an
extremely early stage can lead to an actual value of the project which
is four times higher or one fourth of the original estimate. However
practice shows that the first case is more prevalent. Looking at it from
another angle, probably overestimations, will not generate as much at-
tention as underestimated projects, or perhaps this information does
not even leave the supplying party in the project.

The cone of uncertainty is tailored for the waterfall method,still
we can distill some points on there that are similar for Agile Develop-
ment. The feasability study and planning are for example still done at
the beginning of the project, it is the detailed design and the develop-
ment and test phases that are interative instead of continuous. How
to handle this will be further explained in section 15.1 on page 80.

2.4 software sizing

In section2.2 the fact that one should look at the output of a given
project and quanitfiy this without directly looking at the potential
input in hours was explained. To this extend function point analysis
(FPA) can be used.

Function points analysis is a method to determine a value known as
the software functional size. In this section a definition of functional size
will be given which will serve as a backbone for the rest of the thesis.
Furthermore the dinstinction between functional size, complexity and
effort is explored.

Functional size is an approach to determine the software size. Soft-
ware size is a vital component in cost accounting methods like CO-
COMO as proposed by Boehm et al. [2]. A size of something often
serves like a baseline for the costs of things. One could think of the
size of a cable, the size of a sheet of metal and the surface size of
a piece of real estate. From the beginning when thinking of software
size, what comes to mind is line of codes (LOC) or the kilo equivalent
(KLOC). This is easy to measure and is understandable to everyone.
There is something intrinsically wrong with using this metric as a
measurement of the size. Different programming languages can ex-
press the same system behaviour in a different amount of lines. This
could be solved by making a database which can transpose the av-
erage length of programs in different programming languages. One
could imagine that Ruby equals the Java Code by a factor 0.6 for ex-
ample, since Ruby is known for the fact that less typing has to be done
compared to JAVA. A worse disadvantage to this respect is the sim-
ple fact that the same behaviour can be programmed in fewer or more
statements in the same programming language. This also means that
a developer who writes more bloated code could get praised for being
more productive than his colleague who wrote the same functionality
in the same time with less LOC. Furthermore LOC is something that
one would not imagine of being of interest to any client or a project
manager of a software project. Just as one would not be interested
in number of bricks that are used while building a property. These

13

latter arguments are obviously the main argument that LOCs should
not be considered when talking about software size. This argumen-
tation also shows what is in the end important: The output of the
software created, which is the functionality it offers to the user. To
this extent functional size was created as an alternative to LOC.

Recently also ’business value’ is proposed as a measure that could
be used as an important leverage for contract negotiations and soft-
ware projects. This should be considered a shared responsibility be-
tween the supplier and the client and could be difficult to make mea-
surable as it is context specific, something which function points are
considered to be to a considerably lesser extent.

2.4.1 Functional size vs. effort

In this thesis the step will be made from functional size to effort. In
the end functional size will be the metric that will give an indication
of the effort that should be done to complete a software development
project. This means that the size will be converted to effort using some
parameters, hence the name: parametric estimation. It is important to
note that size is not the same as effort, nor is it directly related. This
is a distinction that is sometimes forgottten, since software sizing is
sometimes blindly used for estimation purposes. To get from size to
error, there are more parameters at play.

Besides this there is another mixup commonly made. That is the
distinction between size and complexity. Where complexity tells us
something about the inner working or contextual environment of a
piece of software of a certain size.

Productivity also plays a part in this, which in its turn has its own
dependencies. Productivity can easily be measured in hours per func-
tion points and the hours per function points rate can be adjusted to
include complexity. In this thesis, no further action will be taken with
regard to the complexity, the focus will be on size measurement of
functionality. It is important to note the difference and the fact that it
exists.

For the case we will abstract from all this and assume in the hours
per function point and the complexity and risks associated with the
project are taken into account.

2.4.2 Product size vs. Developed size

Another important distinction to make when talking about software
size is the difference between product size and developed size. Prod-
uct size is the size of the piece of software at a given moment, or the
estimate of the size in the future. Developed size is the size that was
actual developed, so this includes all the changes and deletions in
the process. Effort is stronger related to developed size than to prod-
uct size. If during development the software functionalities are added
and later deleted and other functionalities are changed, this will lead
to an increase in developed size, but to less extent to an increase in

14

the software size. Considering a piece of software with the same size
with less changes and deletions, you cannot compare the two projects
on productivity without looking at the developed size first.

The terms used for the same concepts are different among meth-
ods. While COSMIC uses product size vs. developed size. NESMA
talks about software size vs. project size. The COSMIC terminology
is preferred, because project size could be confusing. It might lead
readers to believe that it has everything from requirements analysis,
the travel hours for the team to go to the client and the cost of coffee
also in it. These are aspects of a project that are not taken into account
in the scope of this research.

Figure 4: Simplified overview of the correlation between product size and
size developed in reality as well as in estimation

In figure 4 the clear difference between the estimated product size,
the estimated developed size and the real product and developed size
is displayed. Both have a concept in the middle that increases the size
developed as opposed to the software size. In reality these are all
the changes and enhancements done during the project. In estima-
tion this could simply be a factor, which on its turn can be calculated
from different parameters. A continuous improving estimation pro-
gram for new projects should adjust the factor all the time and come
up with parameters that influence this, like client, team, distance. This
is in no respect different from an usual risk analysis. This is consid-
ered beyond the scope of this research as well, but might prove an
important starting point for further research.

2.4.3 NESMA

NESMA (Nederlandse Software Metrieken Associatie) is an associ-
ation that unites the users of function points in the Netherlands.
NESMA developed an own method of function point analysis, which
is a branch from the IFPUG FPA method. The changes from IFPUG
FPA are so subtle that the values obtained for both methods should
lead to almost the same values and be comparable.

NESMA functional sizing is done by looking at the user transac-
tions as well as at the data functions of an applications from the user

15

point of view, where a user can be a person as well as another appli-
cation, comparable to the notion of ’actor’ as it is used in UML.

A function is determined as follows:

The five types of components of which an application exists, as
seen from the perspective of FPA. These components determine
the amount of functionality an application provides to the user.

These five types of components are divided in two groups:

• Data function types

• Transactional function types

The data functions can have two types:

• Internal logical Files (ILF): A logical group of permanent data
seen from the perspective of the user that is used and main-
tained by the application.

• External Interface Files (EIF): A logical grouped of permanent
data seen from the perspective of the user that is used by the
application, but maintained by another application.

The user transactions can be of three types that are recognizable by
the user :

• External Inputs (EI): A unique function in which data or con-
trol information is entered into an application from outside that
application.

• External Outputs (EO): a unique output that crosses the appli-
cation boundary.

• External Inquiries (EQ) :a unique input/output combination in
which the application ditributes an output fully determined in
size without further data processing, as a result of the input.

The size in function points of these functions is determined by their
complexity. Complexity can be ’Low’ ’Average’ or ’High’ and should
be determined differently for user transactions as well as data func-
tions

For user transactions the following concepts are used to determine
the complexity:

• Data Element Types (DET): the number of attributes that are
associated with the user transactions, or are part of the ILF.

• File type referenced (FTR): the number of ILF and EIF that are
referenced in the user transaction.

For determining the complexity of the data functions the following
components add to their functional complexity:

• Date Element Types (DET): attributes or columns of the ILF or
EIF that are used in the application

16

• Record Types (RET): a user recognizable subgroup of data within
an ILF or IEF, or a reference to another ILF / EIF.

Each different function has a different number of functions associated
with each different complexity level. These should be counted for all
the functions identified and the total will be the functional size in
the end. This total function point count is the functional size of the
application.

A schematic overview is shown in figure 5:

Figure 5: A schematic overview of FPA, taken from Heeringen [20]

Using nesma for incomplete requirements

To use NESMA FPA in the early phase of the software development
process, indicative function point analysis (FPAi) and estimated FPA
were developed. FPAi uses indication techniques to estimate the final
size of a project. For this there are a number of strategies, depend-
ing on the availability of the information. A process model could be
used to count transactions and estimate the associated data. Or a data-
model might be used to count the data and estimate the transactions.

The other particular approach to early sizing is especially well
known ’Estimated FPA’. In this aproach all functionalities are counted.
The transactions are rated as average and the datafunctions as low.
In the function points community it is known as the ’Dutch Method’.
These methods will be further explained in the first part of the actual
research. In that part we will introduce the concept underlying early
sizing gradually with the explanation of how this relates to SCRUM.

We will discuss these two sizing methods here.
The real high level requirements can be sized using FPAi. In the

waterfall method the stage in the project which is suitable for FPAi is
detailed in figure 6.

FPAi is performed differently depending on the documentation
available. The different kinds of information needed for FPAi are

17

Figure 6: The place of FPAi in case of waterfall project

defined in the ’FPA in the early phases of the application life cycle’
NESMA [23] manual as:

a. User requirements

b. A list of user data groups (objects)

c. A process model

d. Application boundaries

Furthermore NESMA advises a benchmarking list, which because of
unavailability in the case, will not be covered, as discussed earlier.

estimated fpa In the manual for the FPAi method elementary
processes are mentioned as a minimum requirement for the use of
estimated FPA instead of indicative FPA. When looking at the definition
we see:

Elementary process: a process is an elementary process
when two conditions are met:

• The process fulfills an independent role as far as the
user is concerned and handles the processing of informa-
tion to completion;

• The application is left in a consistent state after com-
pletion of the process.

These elementary processes when identified are either part of a data
functions (EIF or ILF) or part of one of the transaction functions (EI,
EO or EQ). After identfying these, the analyst simply gives the av-
erage complexity to the transactions and the low complexity to the
transactions. It is not needed to look at the DETs FTRs and RETs,
making the chance smaller that the estimation is done incorrectly.

indicative fpa For FPAi the guide to sizing in early stages of-
fers different approaches depending on the available documentation
as described above. One of the requirements is the availability of a
process model, which will lead in the end to a situation in which
we can use estimated FPA. To complete an incomplete process model
a CRUD (Create, Read, Update, Delete) matrix can be constructed
from the processes and the data-groups. If necessary, it can be com-
pleted with different processes. This is a suitable method to make
sure a complete set of user stories will be taken into account. It looks
more suitable for the early stages in a waterfall project for which the

18

requirements should be checked before starting development. There-
fore this technique will be abstracted from in this research. We as-
sume that the backlog should be complete enough and if not, that the
method should be able to handle this incompleteness, without any
additional tooling or methods. The usage of additional tools will be
considered as outside of the scope of this research, but be discussed
at the end as possible improvements.

Without taking analogy based ideas into account, what remains is
the counting of the user requirements. Depending on the granularity
this could be done in two ways. First there is the ’Quick Scan’ when
the requirements are not that detailed.

The functional requirements are sized like T-Shirts by the indi-
vidual project members (Small, Average, Large). Then using expert
judgment estimations (or historical data, or benchmark data) a range
should be retrieved of the number of functions for each category.
NESMA provides us in the manual with the following overview, given
as an example in table 1.

size of requirements Number of functions

Minimum Expected Maximum

Low 0 1 2

Average 3 4 5

High 6 15 25

Table 1: Example of requirements size estimation to a rang of number of
functions, according to NESMA, these figures are often used in an
administrative environment

The size for each functionality might be translated to FP in the end
by using a company standard for Function Points.

This estimation is fast but inaccurate. Another approach is the ’de-
tailed analysis’ of the early requirements. Using this one would actu-
ally reason about the requirements available.

This is done in the following way:

• Make a minimum, expected and maximum possible count for
the requirement, based upon the estimated outcome of the de-
scription.

• Count the total, this will be a range.

The following example is taken from the manual as well, it clarifies
how this could be possible.

User requirement: Maintain customer data Will get the following val-
ues:

• Minimum: Create customer data in an internal user data

• Expected: Create, update and delete customer data in an inter-
nal user data group

19

• Maximum: Create, update and delete customer data and link
contact persons to these customers, using a data group ’Cus-
tomers and contact persons’.

The user data group ’Contact person’ is not included in this count
as it is assumed it will be counted elsewhere in the application or
project.

It depends on the situation and the information available as well
as on the personal preference of the analyst which approach will be
taken.

Using NESMA FPA for enhancement projects

Besides early requirements NESMA has developed a method to esti-
mate the effort of enhancement projects. These are projects that build
on, or alter an existing piece of software. The way of counting these
projects is different, since the final size of the product depends on the
previous size of the project and changes to existing functionalities
need a different way of counting.

For example, when there is a simple output available for the user
in the old product, but this is changed in a very complex output, it
is impossible to count this as a simple EO. After all, there is already
an output. Pretending there was no output before would not reflect
reality as altering is not the same as creating. Previously the output
was low complexity, now it is high complexity. So the amount of func-
tion point grew. This growth should and could be counted, after all,
when estimating or evaluating effort, this effort should be taken into
account.

If we take a simple output that displays 10 DETs, but this output
after alteration shows 12 DETs. This is a small change. However 10

DETs are different than they were before. This could mean the num-
ber of FP stays the same. A developer will spend time on alteration,
so counting 0 is not an option.

To estimate such projects Enhancement Function points were devel-
oped. It is clear that these enhancements make the distinction be-
tween developed size and product size as was discussed in 2.4. The devel-
oped size or to be developed size in this respect is the Enhancement
Function Point count and the product size (or for an enhancement
project, the increase in product size) is the normal function point
count or at least the difference between the new count and the count
of the original software.

The increase in product size can be deducted from the enhance-
ment function point count, but only if a previous count is done on
the project. The previous count is considered the Base count (FPbase)
Enhancement function points are calculated differently than normal
function points.

The following rules for enhancement function points are found in
the NESMA manual for enhancement projects. For adding, deleting
and changing existing functionality:

20

Adding functions

For adding a function, the following rule applies:
EFPadded = FPadded
Which also means that when a new user story is developed, the

EFP method and normal FPA can be used interchangeably. One diffi-
culty is that NESMA in their guide states that the calculated effort for
enhancements in hours as compared to normal development might
be different. This is interesting, since the EFP method already has a
way of making the distinction (counting it separately, with impact
factors). Furthermore this will only generate problems from the per-
spective of the added functionality. After all, the changed and deleted
function points will be marked as such. The totally new developed
versus the added functionalities will not be distincted. This does not
make a lot of sense, since developing new pieces of software should
take about the same amount of time. The reason behind this is that
normally with enhancement projects the team also takes time to un-
derstand what is going on in the rest of the program. Nevertheless in
this research this is considered not relevant.

Deleting functions

For deletions the following Enhancement effort is calculated:
EFPdeleted = 0.4FPdeleted
This is quite straightforward and understandable. It does make

more sense to actually count a deletion less, because it sometimes
is a matter of just deleting the call to a particular function.\

Changing functions

For the changed functionalities the sizing of the developed size is less
straightforward.

For the data types first the number of DETs that are added / changed
or deleted are counted (4DET) Then the number of DETs in the orig-
inal data function (previous baseline) is taken (≺ DET)

DETchanged = 4DET
≺DET

Then an impact factor is defined by looking at the following table:

DETchanged ≤ 1/3 ≤ 2/3 ≤ 1 > 1

Impact
factor

(Ichanged)

0.25 0.50 0.75 1

Table 2: Data function impact factor

The same kind of impactfactor is determined for the transactional
functions:

DETchanged = 4DET
≺DET

Now the same is done for the FTRs:
FTRchanged = 4FTR

≺FTR
With those two percentages the following table can be used to de-

termine the Impact factor:

21

Impact factor (Ichanged) DETchanged

FTRchanged ≤ 2/3 ≤ 1 > 1

≤ 1/3 0.25 0.50 0.75

≤ 2/3 0.50 0.75 1.00

≤ 1 0.75 1.00 1.25

> 1 1.00 1.25 1.50

Table 3: Transactional function impact factor

When the impact factors are determined, the EFP of changed pro-
cesses (transactional as well as data) can be easily calculated by:

EFPchanged = FPchanged∗Ichanged
Where FPchanged is the size of the transaction function after the

change is done.

Total count

The result of the enhancement function point count can be deter-
mined in the following way:

EFPtotal = ∑ EFPchanged + ∑ EFPdeleted + ∑ EFPadded
As stated before, it is also possible to determine FPnew , the new

functional size of the values counted. For this we need some extra
information:

FPbe f ore−change Which is the size of a changed functionality before
the change.

The new size of the software is then determined in the following
way:

FPnew = FPbase +∑ FPadded +∑ FPchanged−∑ FPbe f ore−change−∑ FPdeleted
The enhancement function points count shows that next to han-

dling requirements in early stages of software development it is pos-
sible to size a software project that enhances a previous piece of soft-
ware.

2.4.4 COSMIC FPP

COSMIC Full Function Points (CFFP) is a sizing method that is con-
sidered the second generation of Functional Size Measurement. It
measures the size of software differently from the NESMA methods.
Comparing between the function points counted is still heavily un-
der debate, but since there are fundamental differences between the
two methods this is considered not advisable and outside the scope
of this thesis. If productivity should be measured across teams, the
same sizing method should be used.

COSMIC takes a different approach to the size of a piece of soft-
ware, not the data is important but only the transactions between
the different components of the system. The assumption is that the
amount of different data should be proportional to the amount of
transactions. We will see here that this is actually the case. In this sec-

22

tion, the COSMIC FPP will be explained briefly. For a more detailed
overview of the method, the COSMIC measurement manual should
be used. In this research, the COSMIC method will be not used as a
comparison to the NESMA sizing, but principles that were thought
of to combine this method with Agile Development will be used to fit
the NESMA standard to Agile practices. For this it is important that
the method is briefly touched upon in the research background.

Each COSMIC measurement has three different phases that lead to
a final count of the functional size. These will be explained one by
one.

Measurement strategy phase

In the measurement strategy phase the following things are defined:

• The purpose of the measurement: It is important to know why
the count is done and on what. Things like, counting require-
ments, or counting a readymade application are defined here.
This will define the artifacts that will be used to do the count.

• The scope of the measurement: This defines the set of user re-
quirements that will be counted. The scope mainly refers to the
scope within an individual piece of software, not the different
individual pieces of software that should be counted. An im-
portant part of the scope is the idenfication of different layers.
This is basically the division of the piece of software into an
hierarchical collection of different components. This is done by
decomposing the parts of the software system. The different lev-
els that can be identified are considered Levels of Decomposition.
Each level of decomposition has 1 or more components in it. The
functional user requirements should be all in the same level.

• The functional users are identified: a functional user is defined
according to the COSMIC Measurement Manual as ’A type of
user that is sender or an intended recipient of data in the functional
user requirements of a piece of software’. With determining the func-
tional users, combined with the functional user requirements,
the boundary of the measurement is easily determined.

• The level of granularity is determined: The level of granularity
should be determined. As can be imagined at the beginning of
a software project, the level of granularity for the input to the
measurement is probably greater than at the end. The level of
granularity in this case could be interpreted as a flexible way
of the different ways of leveraging between Indicative and esti-
mated Function Point Analysis.

Mapping Phase

In the mapping phase, while respecting the decisions made in the pre-
vious phase, the following aspects of the application are determined:

23

• The functional processes are identified: The functional processes
are all the processes that can be identified on the lowest level

• The data groups are identified: The data groups go hand in hand
with objects of interest, which is any entity in the functional user
requirements. A data group is a piece of non-redundant data.

Measurement Phase

In the measurement phase the transactions within the functional pro-
cesses that were defined earlier are counted. This is done by looking
at the data movements that occur on data groups.

COSMIC distinguishes four different data movements:

• An Entry (E) to the system where a functional users enters data
across the boundary of the application

• An Exit (X) where the system outputs data outside the bound-
ary of the application to a functional user.

• A Read (R) where a data is being read from a data group on
persistent storage.

• A Write (W) where a data is being stored to a data group on
persistent storage.

The size of the persistent storage is therefore abstracted from and is
implied with the number of transactions and the data groups.

Figure 7: A schematic overview of the COSMIC framework, taken from
Heeringen [20]

Each different transaction identified is 1 csu (COSMIC size unit)
the total number csu counted is the final size of the transaction.

24

2.4.5 Discussions and criticisms regarding FPA and COSMIC

It would be only fair to discuss criticisms on the methods proposed.
COSMIC addresses the critiques that according to COSMICON are
disadvantages of NESMA. These are:

• maximum size of functions is limited

• mostly applicable to traditional administrative applications

• not suitable for new software development methods.

COSMIC was developed to handle these difficulties better than nor-
mal FPA did. However COSMIC itself is not without criticisms either.
Due to its finer granularity, it might be more work to apply it.

In general there is
When looking at the people in the Function Point community we

see that often these are professors, or at least PhDs. It is indeed true
that conferences organized by the community often have more of a
professional goal to it than a scientific one and the methods have a
disclaimer that they are not scientifically proven or developed in an
academic context, but research has been done to prove applicability
in an professional setting.

2.5 expert judgment

Expert judgment is another way to estimate the total size of a project.
An expert is asked to look at the project definition to provide an
estimate of the total amount of time and developers this project will
take. Assumption is that estimates could easily be made by people
with a lot of previous experience. Analogy based estimation will be
implicitly made by the expert and disaggregation is often used in the
form of a ’Work Breakdown Structure’ to divide the entire project
into different tasks that can be estimated easier. Even though it seems
this method is prone to bias and other human factor problems, it is in
fact shown that it often leads to quite acceptable estimates, sometimes
even better than analytical methods, as was shown by Brwer et al. [4].

2.6 scrum poker / story points

When using SCRUM to aid the Software Development process, the
estimates are done by splitting the entire project in user stories.. To
estimate this, story points are given to the userstories that will be
developed in the sprint. Storypoints are a relative size measure to
compare the individual user stories among each other. The principle
behind this is that in general it is easier to tell that an object A is twice
as big as object B, but to estimate the exact size of object A is more
difficult. This makes sure there is no real baseline for the sizes of the
individual user stories. Storypoints are incomparable across teams,
but conversions to hours can be made, by taken the total amount of
hours in a sprint and seeing how many story points were done in that

25

sprint. When looking at how story points are actual made a strange
conclusion can be drawn. Even though people refer to it as a relative
size measure, it is actually a relative effort estimation. The relative
effort estimation that is given to a particular piece of functionality at
the beginning is not revised or verified with any baseline even after
development is done.

To establish the storypoints for a userstory, planning poker is played
at the start of each iteration (called Sprint). Planning poker is played
to determine the total amount of hours needed to do the tasks in
the sprint An arbitrary piece of software is chosen. All the planning
poker players agree on the fact that this is a piece of software they
can identify with. Then the planning poker players all turn a card
which has a sequence of numbers on them (often the fibonacci num-
bers). These numbers indicate how many times the userstory is bigger
and/or more complex. No distinction is made between complexity
and size and the estimation done has the title ’size-complexity’. Size
and complexity are difficult to get a grip on and confusing them leads
developers to answer the question: “how many times longer does the
userstory take to develop as the 1 storypoint piece of software?” This
makes story points a measurement of expected effort, not size nor
complexity. Still if the group is agreeing on a certain amount of story
points and this way of measuring is more accurate as estimations
than the both function point methods, all the disadvantages of story
points can be compensated by the advantages they bring.

26

3
R E S E A R C H M E T H O D

To answer the research question proposed in 1.3 the environment
in which the research takes place will be taken into account. This
is a near-shoring company with different projects that are managed
using SCRUM. Examples are taken from this field of practice as well
as from the literature available on function point analysis.

The research question will be answered in two parts: The first part
in which the method is introduced from the literature and thought of
by the authors. The second part in which the method will be tested in
the case study and conclusions can be drawn regarding the possibility
and the efficiency of such method. Furthermore flaws can be found
which will lead us to present some improvements.

3.1 part 1 : introducing a method for nesma in agile en-
vironments

In part 1 problems will be identified that arise when using estimation
techniques, adhering to Q1. A scientific literature study will be used
to this extent as well as examples from practice, either from sources in
the blogosphere, whitepapers or the interviews with the stakeholder
in the context of the case.

These problems will be investigated on how to solve them with
the methods provided by NESMA and the principles more common
in methods like COSMIC. or how new research approaches these
problems using the methods , like asked in Q2. When taking a se-
lection of the possible solutions to sizing Agile projects with NESMA,
a complete approach can be constructed, called NESMA Agile FPA
(NAFPA). This can be tested for its applicability in a case study in
Part 2.

3.2 part 2 : applying the method in an agile environ-
ment

Part2 will answer the third research question by using the approach
determined in step 1, to test the following hypotheses:

• H1: The accuracy of the estimations (independent of what is
measured) is higher for NAFPA than for expert judgment .

• H2: The effort of doing the estimations is lower for NAFPA than
it is for expert judgment with Scrum Poker.

• H3: The accuracy of the estimations in hours is higher for NAFPA
than for expert judgment .

These hypotheses will be tested by doing a case study, the context of
which will we elaborated upon in the next section.

27

Measurement will be done for some particular moments in the cone
of uncertainty. The measurements will be done by the same analyst,
to make sure the actual measurements are taken into account and not
the measurerer. The sample will not be big enough to result in con-
clusive results, but it will be exploratory of the use of a combination
of the methods and the difference. This is not mutually exclusive. Es-
timating time per sprint using story points can have certain benefits,
like ownership of the developer of the user story and improvement in
team coherence, that function point analysis can not offer. So as was
already asserted. They can be used next to each other.

Afterward a qualitative analysis will be done which will answer
the following questions:

1. Effort of Estimation How big is the effort to use this method of
estimating the project? Effort in this case will be two folded:

a) Time taken to measure. The time taken to measure the
project will be used to give a conclusive estimation of the
effort of estimation. Since costs for a software project are
mostly based upon hours worked, including the analysts,
this will be one of the major concerns.

b) Ease of measuring : How easy is it to measure the project?
Even though the speed of measurement and the ease of
measurement probably are correlated. It could be that the
task takes little time, but is perceived by the analysts as an
uninteresting task to perform.

2. General accuracy : How accurate were the estimations in their
prediction?

3. Accuracy in Hours . How accurate was the prediction when
looking at the amount of hours? For this the function point will
be calculated in hours using the company average for similar
projects.

4. What extra information do we get from using NAFPA?

3.3 case study

The case study is performed at ISDC, a company specializing in
near-shored software development, which has its main office in Hil-
versum, The Netherlands. The case study was performed in Cluj-
Napoca, were most of the software development takes place. Projects
are mostly done using SCRUM at ISDC. A beginning is made imple-
menting NESMA FPA in the organizational processes as well. There-
fore a FPA team has recently been set-up to start working with func-
tion points . For the moment FPA measurements were made for some
real projects and some employees were given the task to count func-
tion points in projects recently finished as means of practice. Further-
more the first Pre-Sales counts were done, which would establish the
selling price. The fact that the case is a company which is moving

28

towards implementing FPA, makes this research applicable to compa-
nies that would like to start with implementing FPA as well. or have a
bit of experience with it already. A disadvantage however is the lack
of expertise in function points the company currently has. This makes
sure the measurements in ’effort of estimation’ will not be applicable
to companies with years of experience in sizing, this will be probably
be less. Furthermore the data available on how many hours per func-
tion point will be less representative for this specific case than that
data at company well acquainted with FPA. We assume that the accu-
racy of the size estimates when calculated to hours will improve over
time and the results in this case should be considered pessimistic.

The case project was considered to be a critical project that would
result in more future projects if done correctly. The specifics of the
project will be discussed in section 10.1.

29

Part I

D E V E L O P I N G N E S M A A G I L E F PA

In this part of the thesis a method will be presented that
will answer the research questions as proposed in Part 1.
By looking at principles from COSMIC FPP, SCRUM and
NESMA FPA, we will propose a method that could be
suitable for controlling the size of a Agile software devel-
opment project, managed in Scrum while keeping track
of the size of the project using the principles presented in
NESMA FPA.

4
D I F F I C U LT I E S W H E N E S T I M AT I N G A G I L E A N D
M O D E R N S O F T WA R E D E V E L O P M E N T P R O J E C T S

Due to its nature Agile development is harder to estimate than nor-
mal waterfall development methods. In this chapter we will map
the concepts underlying agile development to the exact difficulties it
poses for estimating size and effort. The main problem is the change
in focus from the requirements to communication and from a static
plan to adapting to change. As efficient as these developments are for
the outcome of the project and the relationship with the customer, the
harder they make it to do estimations and track project progress in a
quantified manner. These changes will be divided in two main issues:

• The fact that the requirements specification from the start could
be merely high-level.

• The fact that requirements are bound to change

These will be specified in detail and the difficulties they pose for es-
timating using FPA are discussed. Besides these difficulties caused
by the nature of Agile development, there are also difficulties that
are not due to Agile development, but due to the changing indus-
try or general software development. First, there is the handling of
non-functional requirements. These obviously have an influence on
the project effort, but how to make this concrete? The complexity of
the world of software is increasing all the time and all the different
situations cannot be covered in this thesis, but some well known ones
will be discussed on how to estimate and track their size.

4.1 difficulties specific to agile development

4.1.1 Only high level requirements

When looking at the main four principles of the Agile Manifesto
Fowler and Highsmith [19]one of them is:

Working software over comprehensive documentation

One of the consequences of this shift in paradigm, is that the require-
ments of a project in scrum might not yet be fully known from the
start. To make estimations based upon information available is harder
when not all the details are known. The requirements that are avail-
able and their level of detail differ between projects, although the
common similarity is that they can be considered “high-level”. Which
means that they specify globally what the stakeholders expect and
perhaps what is the problem that will be solved. When looking fur-
ther at the requirements the basis of the requirement in Scrum are
the user stories, which are a base requirement before starting a sprint.

31

User stories have the main purpose of conversation starters with the
product owner, during development. This is SCRUM in theory; in
practice often in a grooming session the user stories are discussed be-
tween the team members to make sure everyone understands the goal
the user story tries to achieve. The methods for estimating should be
able to handle these high-level requirements well, but FPA was de-
veloped to score full requirements. The lack of documentation which
was a basic part of the waterfall method FPA should be handled in
order to work with FPA estimations in this environment.

4.1.2 Requirement changes

When looking at the agile manifesto again another one of the four
general principles is:

Responding to change over following a plan.

This is a new foundation Agile has brought the software develop-
ment world and is considered as an ideal. Embracing changes that
occur anyway would be a more pragmatic approach. This is not the
ideal situation when trying to estimate what will be the total effort of
the project in the end, nor to determine its final size. Before the start
of each sprint, the backlog is prioritized and updated. Perhaps the
product owner would like to have functionality changed, removed or
added. These changes are reflected in the software size. The effort
of development is also influenced in the same way, but not equally.
When a previously developed functionality is removed or changed
in a way that decreases the size, the total effort increases, albeit to a
lesser extent, because the deletion comes with extra work. The func-
tional size however, decreases. Considering software size, this will
bring us to a situation where there should be more emphasis on the
size of the developed software (effort) and the size of the software
delivered (software size) as was discussed in the first part of this
thesis. When determining some kind of change factor in early estima-
tions we can already give an indication of the size of the developed
software. This is based on the functionality of the software to be de-
livered as well as some parameters to be considered like historical
data, client specific data, the outcome of a risk analysis, etc.

Changes during the project pose a lot of interesting questions one
could argue about, since changes occur on the border between the
client, the supplier and their initial contract. Changes occurring could
have different causes, either the client was unclear, the client changed
their mind, or on the other hand the supplier was not understanding,
the supplier did not provide the requested functionality or simply
proposed a solution that did not work. How to handle this in con-
tracts depends on the type of project or company and is outside of the
scope of this research. However, for all contracts the functional size
of the developed software should be reflected in a good way to help
make the changes clear. Bug fixing and rework by testing or other
quality checks should be excluded, since these are accounted for by
the developing team itself and most probably will be reflected in the

32

same way during future development. This should be reflected well
in the productivity measurement and therefore it cannot be taken
as in increase in size. It should be possible to track the growth in
functional size to actual development and early estimations, to make
clear whether early estimations were based on wrong assumptions
from the client or the suppliers side as well. Handling changes in
functional sizes as a bonus makes sure that software development
could perhaps easier adhere to another agile principle:

Customer collaboration over contract negotiation.

In the sense that the costs for the development will be distributed
between client and supplier in a fair and traceable manner. However
to evaluate software size as a tool for contractual obligations, would
have to be done in another research. This research will not be primar-
ily concerned with this, but acknowledges its potential.

4.2 non-functional requirements

Non-Functional requirements (NFRs), are not directly seen as trace-
able to obvious functionalities in the system. A NFR as “the system
should be available 99% of the time” might as well be a case of buying
the right hardware and setting up a secure environment. Taken them
into the software size is debatable, since it is not directly contributing
tot the size. Nevertheless, some NFR like robustness, security and us-
ability do contribute to the time taken for a project and the number
of development hours. How to handle these NFRs in the estimation
process? One way is to handle the NFRs by benchmarking, by adding
parameters to the NFRs available and counting some extra effort if
applicable. This alternative will not be explored in this thesis.

Another way to go about this is to dispute the fact that NFRs do
not lead to functionalities in the end. In a secure environment for
example this security will lead to backup functionalities, interactions
with other systems, input validation and authentication forms. All
of which should be counted as function points. This is true to some
extent, but it is not applicable to all non-functional requirements. It
also shows that the danger of counting things double arises when
explicitly counting NFRs. The latter approach is the one that will be
explored and will be used in the method.

4.3 modern solutions

FPA was aimed at administrative applications developed using the
waterfall method. The difficulties that arose when changing software
development management to its Agile form are discussed. The fact
that IT projects in modern day are more than just administrative ap-
plications is not. This will be covered in this chapter. Based on the
current state of IT in general and the context in which this research is
situated we identify the following types of projects that could make
software sizing and estimations more complex than for administra-
tive development:

33

• Application integration, which is done mostly in the background
and therefore has little ’user functionalities’

• Business intelligence, which has the same problem as applica-
tion integration, as well as the difficulty of having time-consuming
calculations in it.

• Web Portal / Mobile development. With web-portal develop-
ment the problem is that some parts are already delivered by the
package implementation. In this research we refer to it as web
portal development, but the same can be said for ERP imple-
mentations or any other software development which is partly
a product implementation.

Because they have common characteristics they will be discussed in
this part at the same time. Another paradigm shift which has not
been discussed is the movement from software to more standardized
’solution’ projects. There create hybrids from the types of projects dis-
cussed above. Known technology is installed as package implementa-
tion, integrated and perhaps tailored with custom development. This
makes sure that all the different approaches to size modern solutions
should be able to be used together as well. This creates challenges that
should be catered for by the sizing method, making sure that the dif-
ferent solutions are not interfering with the basis of the method and
therefore can be combined. We propose that this can only be the case
when the solutions are not that different from sizing the applications
the methods were actually designed for.

The examples of modern solutions do not cover everything, as the
IT industry is highly dynamic. But still it would given an indication
of the suitability of the methods to be used company wide, at least in
the provided context by the case company.

34

5
E X P E RT J U D G M E N T A N D S C R U M

The difficulties of using Scrum with regard to sizing, estimations, un-
clear requirements, changes during the project and the different kinds
of development are handled by principles used in the Scrum method
itself. How this works will be explained here.

5.1 estimations

Expert judgment does not require the requirements to be fully spec-
ified. It is assumed that the expert knows the estimates or retrieves
them by using a WBS or talks with the clients. Together with the his-
torical data, which can be stored digitally, on paper as well as in the
head of the expert is combines with this to make an estimate of the
amount of hours needed to complete the task.

During SCRUM the requirements will be introduced and clarified
by communicating by the stakeholder.

extrapolation of velocity After the velocity (how many story
points per sprint) is calculated, the remaining user-points can be di-
vided over a N-number of sprints. This will serve as the base of the
estimation. This happens in the following way:

First a project is well on the way. Three sprints have been completed.
User-stories are available with story points based on a small piece of
software. Every story in the product backlog has a certain amount of
story points and we estimated a total amount of story points for the
rest of the project.

• The velocity in the previous sprints was: 20 story points per
sprint.

• We know that we have 400 story points to go

• That will be 20 more 2 week sprints.

• The total amount of time reserved to finish this project is there-
fore 40 weeks.

When doing a couple of sprints, the velocity will slowly increase. Ve-
locity is determined as the number of hours taken to complete a story-
point.

According to a recent article in a Dutch IT industry magazine On-
vlee and van Solingen [25]his extrapolation could be done as well
with Function Points, however little actual research was found ex-
plaining this or proving its convenience. In the case this will be tried
arbitrarily, by comparing the estimate of the sprints done to the total
project and assuming this will be the case for the other sprints as well.

35

5.2 accounting for change

Experts will probably take into account number of changes requested
by the specific client in earlier project, if applicable, or just add some
percentages on top of the original estimations making sure the changes
are incorporated in the estimation process. This could be prone to bias
and estimation errors, because it is basically based on a guesstimate.

In later stages however, the estimation in between, are performed
at the start of each sprint. Since sprints are usually started with a dis-
cussion with the product owner, with whom the team will discuss all
the changes , requirement changes are therefore taking into account.
When extrapolating on the velocity, taking into account the changes
done in the sprint up until now and calculate this, based on the infor-
mation available.

Furthermore storypoints are considered a measure of size-complexity.
This means that implicitly the participants in a SCRUM poker session
will take the changes into account if they see this coming.

5.3 non-functional requirements

Expert judgment definitely includes the non functional requirements
as well. A highly critical system will be estimated by an expert as
taking longer than one that does not require the same high level of
defined NFRs. In scrum poker the non-functionals will lead to user
stories that will be developed separately from the or will be taken
into the scrum anyway. Although this is still topic of debate as well.
One approach is to add the non-functional requirements on the user
stories as an extra line.

Handling non-functional requirements in Scrum is advised to be
done as it is in the actual situation as well. Non-functional require-
ments normally span the entire software to some or lesser extent. For
example the usability constraint could be expressed in a user story in
the following way:

As a library user
I want to search for books by title
With speed and ease of use
So that I can find all books with similar titles.

Note that this is performance and usability NFR which applies to this
user story. Now that we have shown how to handle the NFR in the
context of user stories, it is clear that these are handled automatically
in the way of estimating as well. This user story will probably receive
a higher number of story points than a user story without these extra
constraints in wide-band Delphi as the NFR gives the estimator the
idea that it will take longer to meet this requirement than one without
this extra requirement.

36

5.4 modern solutions

Since the expert judgment is done by either one expert or a group
of experts, probably no issues will arise when doing the expert judg-
ment on a given project which is part of the ’modern solutions’ dis-
cussed earlier. Scrum teams are normally composed of people having
previous experience in the field , making sure that the new demands
in software are covered for scrum poker as well. This flexibility of
both methods is obviously one of their strongest advantages. There-
fore, except for the shortcoming discussed earlier, expert judgment
with scrum-poker should be able to handle all difficulties illustrated
above. The way this is done is through its extreme flexibility, which
is created by the expert software developers.

37

6
U S I N G F PA C O M B I N E D W I T H S C R U M

When looking at the application of sizing methods and the Scrum
project methodology we see that the COSMIC method has come up
with ways to handle the difficulties proposed in chapter 4. Although
NESMA did not come up with potential solutions, we can use the
strategies proposed by Rule [26] and COSMIC [18] to improve the
way NESMA can handle this. When looking at the principles COS-
MIC proposed, we see that some of these principles, could be used
for counting in FPA as well. These principles will be introduced here
and combined with the NESMA method. This will gradually show
that also NESMA can be applied in Agile environments.

First we will see that NESMA FPA can be used to estimate the final
size when not all the requirements are known. The size can always be
estimated based on the information available. Then it will be made
clear that it is also possible to estimate the size of user stories us-
ing known principles. This results in separate parts of the application
that can be sized using distinctive methods, based on the detail of in-
formation known about these parts. We will see that using principles
proposed by Rule [26] these could be sorted n a clear and convenient
way. This will provide us with a technique to handle the different lev-
els of granularity in requirements and to keep track of the size using
the backlog.

After showing this, the changes will be handled. It will become
clear that also changes and the discrepancy between work done and
work delivered could be handled using principles from NESMA. It
will be shown that the combination of early sizing, functional sorting
and EFPA will provide analysts with the right tools to keep track of
size without losing connection to the Agile principles.

Then, a method will be proposed to help the analyst with sizing
the non-functional requirements. Finally the modern solutions will
be discussed.

6.1 the beginning of a project : requirements before the

start.

Although user stories tend to be very useful at the beginning of a
sprint, obviously there will be some other sorts of high level require-
ments that are even available before creating user stories to put the
requirements in. This is normally in the part of the project which is
referred to as Pre-Sales or Sprint 0. These could be the feasibility study
of the project, the process diagrams provided by the stakeholders or
descriptions on the goal of the project. These requirements could even
be from a coarser granularity than is required for FPA and therefore
require a different way of sizing. As was introduced in 2.4.3 NESMA
provides us with different way of estimating software size in a spe-

38

cial manual for early sizing. In that manual, methods are provided to
count function points in different levels of detail:

• Detailed FPA: Which can be done when the requirements are
detailed enough to be interpreted for the NESMA method, this
is the default method of NESMA FPA.

• Estimated FPA: Which is applicable when the requirements are
generally known, but not in enough detail to determine the com-
plexity of the functions.

• Indicative FPA (FPAi): as discussed in the previous chapters,
which could be used to make a rough estimation of the future
size.

When the requirements go from being high level to detailed enough
for detailed FPA, the corresponding method can be used to get an
idea of the final size.

First we will explain how to size requirements on the level of user
stories. Next, we will show how to handle different requirements.

6.2 start of a sprint : sizing user stories

User stories are created for the purpose of acting as a trigger to con-
versation with the product owner. This means among other things
that a user story when perceived as a requirements can only give a
high level overview of what the system should do, the details of the
functionality after all, still need to be discussed. Nevertheless, COS-
MIC shows that it is possible to estimate an almost detailed function
point count to a user story.

A user story should have the following structure, according to
Cohn [7]:

As a [stakeholder role]
I want to [perform an action]
[With some frequency and / or quality characteristics]
So that... [description of value or benefit achieved]

Grant rule Rule [26] suggests to redefine this in COSMIC terms to
make it compatible with COSMIC to:

As a [functional user]
I want to [respond to an event]
[With some frequency and / or quality characteristics]
So that... [useful output, or outcome, produced]

This is merely a subtle difference that might be confusing to users of
the scrum method and does not contribute to the COSMIC method
to great extent. Therefore it will not be incorporated here. It does
show an interesting correspondence with the COMIC method and it
shows that a user story could be used to estimate the final size of
the user story. This can be illustrated with example shown in figure 8

39

Figure 8: An example of a user story and the corresponding COSMIC FFP
count , taken from Rule [26]

which shows us how the user story shown earlier can be counted as
3 COSMIC size units (CSU).

This is a simple example and in practice not every user story is that
easy. In this example the user story is equal to only one functional pro-
cess. When taking the rules of user stories by Cohn [7] into account
we might even argue that a user story should be only one functional
process. This however is an utopian view on the agile process and
therefore risky as an assumption. In reality in projects user stories
might not be so strict in their granularity. A user story consisting of
more than one functional processes turns up in professional and aca-
demic literature. inDesharnais et al. [8] for example. Therefore it is
assumed that this will in practice be the case on numerous occasions.
This is a simple matter of repeating the same exercise as in figure 8

more than one time. Given all this, we should aim to do the same us-
ing NESMA. As in both cases they are functional size measurements,
they should be able so give a measurement on the same level. Since
NESMA looks at different aspects of the application and for example,
takes the data separately, we should make some assumptions to get
an indication of the function points:

a. Library user is an authenticated user and therefore has data
associated with it

b. The books data-group is not developed explicitly to satisfy this
user story and is already available (and is therefore developed
in another user story)

c. The books data-group as well as the user data-group are inter-
nal logical files in the program (ILF) and not an external logical
files (ELF)

d. The list of books has maximum 5 values associated with it.

With these assumptions in mind, the user story is a prime example
of an External Output. Since it references 2 ILF we get the following

40

table. One might imagine that most of these assumptions should nor-
mally be known to some extent beforehand, by looking at the entire
project.

Type FTR DET Complexity Function Points

EO 2 <=5 Low 4

Table 4: NESMA detailed count with assumptions of the example user story
(figure 8)

Since the user story only references 2 ILF and because of assump-
tion D The user story is 4 story points.

The fact that these assumptions can be made all the time correctly
in SCRUM is unlikely, therefore if possible some will have to be elim-
inated. This is possible when using estimated FPA.

If we use estimated FPA the count gets easier. For estimated FPA,
it is not necessary to know the details of the function in this level.

We identified that the user story is a prime example of an external
output. In estimated FPA, all the transactional functions are rated
average. So this would be rated at average. Therefore the number of
function points for this part of the software is 5, as can be seen from
the following table:

Type Complexity Function Points

EO Average 5

Table 5: NESMA estimated count of the example user story (figure 8)

Just as a user story can have different functional processes, a user
story might have different elementary processes. But next to the trans-
action elementary processes (EO, EI, EQ) the data has to be counted
as well.

This could be approached in the following ways:

• The creation/modification of the Data is put in separate user
stories

• The data has already been created in another project.

• The data will be created inside in that user story, leading to
a combination of data and user interface changes in one user
story, which is fine, as long as the same data is not partially
made in another user story.

If the latter is the case, a Work Breakdown Structure is often used to
make a distinction between the two. In this case it is easy to size the
user story. If the split is not so clear , this sizing will be difficult. In
that case it is wise to enforce the splitting of data and functionality
based tasks in the WBS. This means that even before an actual count
is made in FPA, the way of working in planning and starting up this
project should already take the counting guidelines implicitly into
account. While this could be considered a disadvantage, splitting data

41

oriented tasks from transaction oriented tasks, similar to methods
like Model View Controller (MVC) and other approaches, might be
needed in any case.

When looking at the book example from figure 8 again, given that
idea, the userstory will be valued like this:

• Minimum: The library user wants to simply get a list of book
titles whenever he types in a book title.

• Expected: The library user wants to have basic information with
the book.

• Maximum: The library user wants to get a list of books with
a lot of detailed information regarding the books furthermore
mistakes should be corrected by suggestion and possible book
titles should be given when the user gives the first letter of the
title.

The difference here is that not the amount of functions are counted,
but the size of the separate functions are estimated. Originally this
should be expressed in a range.

6.2.1 The other way around: assessing user story quality using FPA:

Now that the possibility to extract FPA counts from user stories is
explained. This could also be used in the reverse direction. If it is not
possible to deduct a count from the user story, it could mean that the
user story is either not clear, or on a wrong level of granularity. This
is explained in Desharnais et al. [8] in which it several levels of pos-
sible sizing are identified that can be used to assess the right level of
detail of an user story to put it into a sprint. Only when detailed siz-
ing is possible a requirement is good to be used for development and
testing purposes. Note that this idea could be contrary to the princi-
ple of requirements in Agile, where they serve merely the purpose of
communicating with a stakeholder. It might be good practice to estab-
lish the FPA detailed level as a baseline just before starting develop-
ment. This is normally done in the SCRUM practice called grooming.
Where among other activities, the stakeholder together with the team
go through each requirement to make sure everyone involved under-
stands the goal and what should be done.

In case a user story is considered not detailed enough, some differ-
ent actions could be taken:

a. The user story will be split.

b. The user story will be clarified in this grooming session.

c. The user story will be placed in a group of user stories that
have not been clarified yet. For this see the next section about
the sorting of user stories in a product backlog.

This is outside the scope of this research but it is worth mentioning.

42

6.3 start of a sprint : sorting user stories .

We have shown that estimated sizing is possible even if the require-
ments are not fully detailed. As one can imagine the requirements
in an Agile project will by definition not have a guarantee that the
requirements have the same level of granularity at the same moment.
This asks for a combined approach to make the estimations. In their
manual for handling software size in Agile Development COSMIC
[18], provides us with a way to handle this combination. Simply put,
user stories are sorted in three sections, called functional areas, based
on the knowledge available:

a. High detailed user stories, where the measurement of Function
points to be developed could be done in detail.

b. Less detailed user stories, where the number of Function points
can be estimated as an average size

c. Low detailed (not even user stories), where the size can be esti-
mated by analogy, for analogy however a lot of historical data
is required, which in the context of this research is not avail-
able. Another high level sizing method should be used, while
analogy will be a viable option for the future.

COSMIC does not take user stories into account. The COSMIC con-
cept is centralized around functional processes. According to the con-
sortium these should replace user stories. They serve the same pur-
pose: the division of the project in manageable chunks. With this ap-
proach a product backlog could be created as seen in figure 9.

Figure 9: A product backlog dividing functional processes in functional ar-
eas and estimating them. As taken from COSMIC [18]

Since ruling out user stories and their story points is too radical
and could compromise the agile process as it is supposed to be, the
functional processes should be created from the user stories, and be
used in co-occurrence with them, not replace them. Therefore in table

43

10 a more suitable representation of this backlog was created by the
authors which combines the use of user stories with the concept of
functional processes and COSMIC sizes in Csu.. Furthermore, story
points can still be constructed from the user stories and the rest of
the project remains unchanged. Certainly at the beginning function
points should be used as a tool for quality assurance and project con-
trol, which is best done without putting impediments on the people
and their current way of working.

Figure 10: Example of a product backlog with user stories estimated in COS-
MIC FFP, as adapted from figure 9 by the authors

When looking at this backlog it is obvious that the three functional
areas correspond to different methods of FFP analysis. While the user
stories in F.A. 1 one can be sized in full detail, the user stories in func-
tional area 2 should be estimated. In functional area 3, the remaining
part of the software to be developed is not even put in user stories
yet. An indicative method should be used instead of analogy. Conve-
niently using these three levels of detail the same approach can be
used as is explained in 2.4.3. Where the three different ways to size
requirements in early stages using NESMA are presented. The same
product backlog could be constructed to make the count for NESMA
easier. When looking at the projects done in SCRUM, the user stories
in the backlog in F.A. 2 meet at least the requirements to perform
estimated function points analysis. For F.A. 3 the indicative method
could be used to obtain at least some indication on what is to come.
In this way it is easy keep track of the growth of the application and
the difference in change needed in the database and needed in the
end application.

Now we can establish that to some extent NESMA can handle the
same concepts as COSMIC, albeit in a perhaps more cumbersome way.
Therefore a product backlog alike overview could be created. Here

44

the division in data and transaction development should be handled.
To this extent two approached can be taken:

• To take them separately, so creating a product backlog for each

• To take them together and make the distinction in the backlog
itself.

This choice is open for the detailed count as well as for the estimated
count. For the indicative count, this choice is not so easy. In the in-
dicative approach, a total estimate is given based on the information
available. To make a distinction would complicate the matter, since
the size of that data could be derived from the transaction functions
or vice versa. Therefore we argue that it is best to keep them together.
Separate overviews may be made derived from the data in the prod-
uct backlog, but in the center there should be a product backlog that
has the entire count.

A product backlog could be created which is similar to the one used
for COSMIC, as can be seen in figure 11. In this example it is simply
shown how a backlog could be constructed. In reality, descriptions
and references should be added, tailored towards the specific devel-
opment project.

Figure 11: The setup of a product backlog that could be used for NESMA
counting for the transactional functions

In this figure already one of the FPA weaknesses becomes clear.
When looking at user story 3 (US3) it is shown that the total size of
that user story is 30 FP. With an average of 5 hours per FP, this means
150 hours of work. We will probably see that the task takes less time
than planned and is more due to the fact that data is counted more
heavily than transactions in NESMA.

The velocity in that sprint, when calculated, becomes high. It could
be 3 hours per function point when many data functions were de-
veloped. This would give a skewed image of the productivity and
is therefore a good reason why the splitting of data and transac-
tional function is problematic. FPA should not be used for micro-
management. The velocity across teams could be evaluated in the

45

end nonetheless, since the high FP count for the data is compensated
by a lower one for the transactional functions. The tracking of the
project progress might show some deviations as well for the same
reason. The relative big size difference between data and transactions
and the fact that data is a prerequisite to transaction development,
could make sure that the project might seem as being further ahead
than it actually is at the beginning.

6.4 during sprint : changing requirements

As discussed before, the changing nature of the requirements and
functionalities in agile development is one of its main advantages in
user satisfaction as well as its disadvantage for making estimations.
Even though the idea of changes in software is not new, to treat them
during the process as normal instead of treating them as deviations is.
Conveniently for treating them afterward, NESMA already supplied
its applicants with a method to take changes into account: Enhance-
ment Function Points (EFP) as was discussed in 2.4.3. They refer to
the changes as enhancements after development is done. This means
that software is delivered to the client, which after using it for some
time, comes up with requested changes to the functionality. For ’en-
hancement’ projects like this, the size of the enhancement could be
estimated based on the requirements. This is comparable to the way
the iterations are handled in Scrum. In fact after each sprint software
is supposed to be delivered to the client, which in its turn is assessing
it and comes up with possible changes.Therefore we argue that the
usage of enhancement function points will provide a good overview
of the developed software and quantifies the size of the changes done
requested by the client after each sprint.

Enhancement function points will be introduced in the way we see
it fit in the method as proposed so far. In this way the incomplete and
changing nature of the information available can be tackled at once.
The size of the developed software therefore is the EFP, the size of
the developed software will be determined from the EFP, so EFP in
this case is the leading measurement after sprint 1. The difficulty here
is that the data-functions need to be separated from the transactional
functions again. This is hard to do in a user story. However in the case
situation as well as often in reality, a user story, when discussed with
the client, leads to a WBS that will split the changes to the database
task and the changes to the functionality task. If this WBS is available,
it is easy to count the changes done.

Now the counting can be done similar to a sprint backlog, adhering
to the EFP method as well as to the general FPA method. This is
shown in figure 12. In this example only the white columns need to
be filled in, to determine what happened in that sprint with regard to
the size. All the other information is taken from information provided
in the product backlog, previous sprint backlogs or the NESMA rules
of counting function points.

46

Figure 12: An example of a sprint backlog for a sprint that could be used for
NESMA counting, only the white fields have to be filled in, to do
the count

This could be used as the an important tool in dealing with the
client as well.

Figure 13: The following small report on what happened in the sprint de-
picted in 12 can easily be made from the count.

When we combine this information from different sprints,we can
make the following overview as well of all the sprints occurred until
now. This provides us with an overview which shows us the devel-
opment of the change factor and the velocity in one easy overview as
can be seen in figure 14.

This will give us already some important information, like velocity
in FP/Sprint and the ratio between the functional size delivered and
the functional size developed, for each sprint. Note that the same
might be done for each user story to see the outliers.

Figure 14: An example of an overview of the progress made in different
sprints during development that could be made using NAFPA

When translating this back to the product backlog, an overview can
be made that puts the estimated size next to the developed size in the

47

Figure 15: The changes from 12 taken into the product backlog, for the
NESMA count

functional areas for each user story, as can been seen in figure 15 This
will give the current state of the project in one overview. The user
stories that turned out bigger than expected in terms of functionality,
or with a much higher developed than delivered size can be easily
seen. Ideally one would like to have an information system that links
all the information regarding size in a click-through overview. This
would make sure that all the information is easily traced back to small
parts of the system. For now, it is sufficient to show that his can easily
be done.

In figure 15 most of the values in the project can be taken from the
vales obtained.

• We see that 107 of the 220 FPs are completed, but this is not the
entire truth. We see that that part of the 107 FPs was actually
estimated to be 95 FP. So in terms of added functionality we
have 15 FPs, this is an increase of about 12.6%. Which could be
considered scope creep.

• Furthermore the actual percentage of which the project is done
in terms of estimated FP is therefore 95

220 = 43.2%

• When assuming that the same increase in size will occur, the
estimated size on delivery will have 12.6% extra which will be
248 FP

• When losing that assumption the estimated size on delivery will
be at increased with 15 FP to 235 FP.

• The ration between product size and developed size (quantifica-
tion of changes needed to developed to FP) is 129

102 About 20.5%

• The total effort for this project could therefore be estimated as
248 increased with 20.5% which is 299 Effort FP, of which 129

are done.

• Depending on the velocity in EFP/Sprint, the number of re-
maining sprints can be easily calculated, therefore the deadline

48

can be checked on feasibility and measures can be taken to ei-
ther delay or make sure the deadline is met.

The values obtained in this examples are not taken from a real exam-
ple, they are merely used to illustrate how the count could be done.

This count can also be done for more sprints than just one, since it
might not fit an organization to have people counting function points
that often. Fact is that changes are easier to track in a short time-span
than in a long one, but this is depending on the resources available. If
a detailed change log is kept of all the changes made in the develop-
ment process, the count can be done taken that log as the main source
for the development done.

It is important to have one approach and example approach that
will be used in the case. This will be done by introducing three differ-
ent situations and take a weighted average of this.

The three different situation, or assumptions, are the following:

1. The ’wrong estimate’ or ’ahead of schedule’ assumption, in
which the scope remains unchanged, regardless of what hap-
pened in the sprint.

2. The ’incident’ assumption in which we assume that the func-
tionality developed more was due to implicit client changes or
underestimation of the function points before. We also assume
that the other estimates are still correct but the extra developed
functionalities are added to the scope.

3. The ’representative for project’ assumption in which we assume
that there was scope creep and we expect that this will happen
as well for the end-functionality. Considering the overall knowl-
edge regarding IT projects, this could be the most realistic one.

Weights can be given to these three different alternatives. It might
be wise to emphasize on the third alternative, knowing that extra
work and budget overruns are more common than software projects
finished earlier.

49

7
F PA A N D N O N - F U N C T I O N A L R E Q U I R E M E N T S

As was discussed in 4.2 and 5.3 Non-Functional Requirements (NFRs)
should be added as tests in the user stories. Due to the flexible nature
of the agile method, this might not always be the case. NFRs can also
be put in separate user stories. Furthermore they are often introduced
upfront and should be counted separately in doing estimations.

To handle non-functional requirements in a functional context, the
NFR framework was developed. This serves as a base for solutions
in software sizing that were developed recently (SNAP for IFPUG
and NFSM with COSMIC). NFSM will be briefly discussed to give
the solutions a context and then the specific methods are introduced.
Unfortunately information on SNAP is not publicly available and is
rather new, therefore it is not taken into account as part of this re-
search. That is the main reason that in this part, inspiration will be
taken from COSMIC literature again. The NFR framework and its
combination with COSMIC will be briefly introduced and then the
concepts will be fitted to the way in which to size functionality in
NESMA.

7.1 nfr framework

The NFR framework as presented by Chung and Prado Leite [6] is a
way to make non-functional requirements more explicit throughout
the development process. This framework proposes to go from Non-
functionals to sizable chunks by making a divisions in goals (soft-
goals) that depend on the satisfaction of the NFR. In the end-nodes of
this network, some functional requirements can be discovered. These
functional requirements can be sized. When developing the NFSM
(Non-functional Size Measurement) method Kassab et al. [11] build
on this framework.

The NFR method exploits the idea that a Non-functional require-
ment like ’Performance’ comes with certain functionalities that need
to be added to the system. The method is aimed to discover these ex-
tra functionalities by means of identifying soft-goals. . There a three
different kind of soft-goals:

• NFR soft-goals, which are a high level non-functional descrip-
tion (like ’availability’), which can be decomposed into NFR sub-
softgoals

• Operationalizing soft-goals, which can be operationalized (like
’indexing’)

• Claim soft-goals, which make a claim that can be checked. (like
’Gold card accounts are important’)

50

From this it is obvious that operationalizing soft-goals can be easily
perceived as a sort of functional requirements. They do not neces-
sarily capture functionality visible to the user, but supply us with a
requirement that can be measured. The inter-dependencies between
the three can be made apparent by using a Soft-goal Interdependency
Graph (SIG). An example of a SIG can be seen in figure 16. Claim
soft-goals are nothing but some extra information that can be omit-
ted from the sizing. The core of what could be used from the method
for sizing is merely a decomposition of NFR soft-goals, to sub-goals
to operationalizing soft-goals, in order to use a FSM to increase the
measured size in a representative and logical way.

Figure 16: An example of a Soft-goal Interdependency Graph (SIG) as pre-
sented in the NFR method. Taken from Kassab et al. [11]

non-functionals as a separate kind of requirements In-
evitably, non-functional requirements are not just a group of func-
tional requirements, therefore some aspects of non-functional require-
ments will not be possible to break down to functional requirements.
This part of the non-functional requirements are either used to guide
architectural choices, or they do not contribute to size, but to com-
plexity. Regardless of this discussion, in this section the way in which
NESMA could use this framework will be discussed as at least one
possibility to handle this correctly.

7.2 cosmic nfsm

The operationalizing soft-goals identified by the NFR method could
be sized using COSMIC, according to Kassab et al. [11]. Besides the
operationalizing soft-goals identified, they argue that each NFR soft-
goal could come with two operationalizing soft-goals, because some
non-functional requirements need to be controlled. For this one could
imagine that at least availability monitoring and availability quantifi-
cation (measure some variables to obtain a value that represents the

51

constraint). This logical consequence of having those two control sub-
processes, can be seen in figure 17 .

Figure 17: Functional requirements implied by the non-functional require-
ment ’availability’, taken from Kassab et al. [11]

Now that we have obtained the two sub-processes which size can
be measured. We see that the non-functional requirements contributes
to the total size of the application. The measurement is taken from
Kassab et al. [11] and verified by the authors.

When we size every component like this, we can fill in the model
in figure 16, in the way as portrayed in figure 18.

Figure 18: NFR From figure 16 filled in with corresponding CFP

We see that the total size of the NFR for security is 18 CFP, this is
an contribution in total project size which should not be overlooked
when estimating the effort for the project.

7.3 using the same principle for nesma

NESMA did not take non-functional requirements into account yet.
IFPUG recently developed SNAP, which should be able to make es-

52

timations more accurate by taking the non-functional requirements
into account. The information made publicly and academically avail-
able on SNAP is limited. Therefore for the moment it is not possible
to discuss this in detail and this research will focus on using the NFR
for NESMA as well. When looking at he COSMIC FPP method, the
same principles could be used for NESMA, just as it was the case for
the high level requirements. So by making use of the NFR framework,
some measurable parts of the NFR will be given that we can measure
with NESMA. In the example below it will be explained how this is
possible.

When looking at the operationalizing soft-goals above we can try
to use NESMA FPA to size the operational soft-goals as well. For this
we will start from the point where we identified the same processes
as before. The only difference would be the sizing on itself. We again
have the two processes, discussed earlier:

• 1.1 The availability quantification

• 1.2 Availability monitoring.

Again, we have the difficulty that NESMA method obliges us to con-
sider the data separate from the transactional processes. This makes
the sizing a bit more difficult. We assume that the failure history is a
small ILF, the target availability level is an EQ. Furthermore the up-
date of the current availability level is EI. The complexity of all these
things is low. Therefore we will get the following table:

Table 6: size measurement of the availability non-functional requirement

When we size every component like this, we can fill in the model
in the SIG as displayed in figure 18, in a similar way.

Since we assume another table needs to be created, which adds
heavily to the FPA count in the end, the availability NFR adds 13 FP
to the total. Again some assumptions had to be made regarding the
counting and especially regarding the data functions. It is unknown
whether the failure history is an ILF, or perhaps an EIF. One could
imagine that if in the context of this case there are a lot of different
systems, a general solution is used to track availability of all systems,
therefore the ILF becomes an EIF, making sure the count goes from
13 to 11, if the complexity remains low.

An external solution taking care of availability might have larger
needs regarding the data, adding to the complexity. This all depends
on choices made by the architect or product owner on how to handle
the non-functionals.

53

Regardless of what is the case, all the assumptions made during the
development process should be documented well so the entire project
progress in terms of estimated effort vs actual effort is transparent.

54

8
M O D E R N D AY S O L U T I O N S

When looking at the modern solutions detailed in chapter 4.3, difficul-
ties can be found. After all, FPA was developed with administrative
applications in mind. All of the different applications domains dis-
cussed in 4.3, have certain characteristics that might make them hard
to size. In this chapter some guidelines will be shared on how to cover
these particularities in functional sizing.

8.1 application integration

Application integration is different from default development projects,
because it has little interaction with the user. In functional size mea-
surement this can be handled by looking at different applications as
different users. A user does not have to be a person, it could also be
another application. When integrating application A and application
B, both of them could be the user viewpoints, interfacing with the
other application. On the other hand, one might choose to count the
integration as the application that takes data from all EIFs. EIF be-
ing the data in both applications. Both would make sure an accurate
count can be done. Counting the functionalities should be done in
a way that no functionality is counted double, the analyst should be
very careful with application integration in this respect. NESMA does
not have a specific guide for this at the moment,There are guidelines
for the usage of EIFs and for the usage of transactions to another ap-
plication. This should be decided upon in the prelude to the actual
counting.

8.2 business intelligence

For business intelligence there is something similar going on, since
business intelligence / data-warehousing emphasizes less on user
functionality and more on internal combining and interpreting data.
NESMA published manuals and articles related to BI and data-warehouses.
Since this is available, but will not be used in the case. This will only
be covered briefly.

In discussions on forums as well in real life, the fact that business
intelligence has difficult calculations are considered to be missing in
FPA. However complex calculations are a matter of complexity. This
complexity has to do with a different factor that influences the ef-
fort needed in the end. Furthermore is the fact that data-warehouse
project often have difficult calculations in them that take a lot of time,
could be quite general for all data-warehouse projects. This makes
sure that the development of a function point could take more hours
in a business intelligence project than it does in a project for normal

55

Activity Effort
in

Days
/ FP

As is 0.4

Configured 0.7

Customized 1.7

New 2.1

Table 7: An example of a table to determine effort from the FP count for
different activities

administrative software. This is normal, just as a house, albeit smaller
in size could take longer to build than a warehouse, of much bigger
size, but with a lot less complexity.

8.3 web portal package implementation / mobile devel-
opment

For web portal development there is a problem for estimation and
sizing. Needless to say the project could be sized, but the question is
whether it is necessary. Installing a portal like MS Sharepoint comes
with a lot of functionalities that do not need to be developed., there
was one that does seem logically sound, but might be less pragmatic
for actual use.

An Australian consultancy company published a white-paper CHARIS-
MATEK [15] with the following approach. The whole project should
be sized, but the effort related to the function point count could be es-
timated differently. According to the method, functionalities in pack-
age implementations are delivered to the customer in four different
ways

• As is: fully supported by the package

• Configured: the functionality can be configuring from built-in
configuration tools.

• Customized: Source code level changes should be made to the
package in order to deliver the functionalities

• New: Functionality is not available in the system and needs to
be developed for the users.

It is clear that not everyone of these activities, while contributing in
the same way to the functional size, do not take the same effort when
implementing them. The effort again is depending on the expertise
available at the company and should be derived from historical data
in the company itself. Therefore the following table is proposed:

In this way sizing and estimation can still be done for portal devel-
opment. Sizing the entire installation of a portal like MS Sharepoint

56

would probably be a waste of time, so it depends on the equilibrium
between effort invested in estimation and the value of the estimation
in the end. An alternative could be to only count the configuration
and development parts, and making an expert judgment estimation
on the unconfigured parts of the solution. furthermore it might be
possible to get the exact count for a sharepoint installation, or part
of its standard modules because public data is available on this. This
is unlikely, yet not impossible. Another problem with package imple-
mentation as discussed by Chaturvedi et al. [16] is that a part of the
requirements might be covered by existing functionality in the appli-
cation, although not all the functionality implemented by the package
is actually required by the client, but it comes automatically with in-
stalling it. So the delivered functionality will increase without any
reason. It is not extra work requested by the client just as it is not ac-
cidental extra functionality. Chaturvedi et al. [16] proposed package
points as an alternative. They argue that function points are not suit-
able for package implementation due to the difficulties raised above
and it therefore needs its own method. The example above, even if
not very pragmatic, shows that this is not totally necessary. The extra
functionality should not be taken into consideration, at all. Not as
final delivered functionality, not as requested functionality. The most
important lesson to take from all these small ideas is that some sort of
functional sizing can be done, but some creativity should come into
place. It is worth noting that the proposed solutions are only avail-
able in some white-papers of relatively small companies working in
the field of software cost estimation and are in no way academically
verified.

Mobile development

Due to the fact that mobile development for small applications, for
platforms like iOS and Google Android has been focus of attention
only recently, not much information was found regarding estimation
and sizing. However functional sizing should not be a big problem,
the screens in the applications are outputs often using writes to and
from a database. In NESMA these are often EI, EO and EQ communi-
cating with an EIF. One ought to be careful. When decomposing mo-
bile development and looking at merely the development of a phone
application, the danger is that the object to be sized is too small to
be used for this kind of estimating, as software sizing is not recom-
mended for small projects (< 100 FP) due to its coarser granularity.

57

9
PA RT 1 : R E C A P

Using a selection of the techniques to overcome the problems as
discussed in the previous chapters we explored solutions in which
NESMA FPA can be used to estimate before and during developing
when using scrum. We consider this specific application of the mix
of methods NESMA Agile FPA (NAFPA). NAFPA could perhaps not
only be used for estimation and benchmarking purposes, but even
serves as a meaningful baseline for other purposes, like project con-
trol and productivity measurements. Using techniques advocated by
NESMA itself for many years as well as some new approaches from
the COSMIC method, we have shown that the following activities are
theoretically possible using NAFPA:

• Sizing high level requirements up to the level of user stories and
beyond.

• Keeping track of the changes during development and at the
end.

• Making estimations at the beginning as well as during the pro-
cess.

• Separate developed functional size from product size.

• Calculate velocity (productivity) in way that it can be compared
across projects and even companies.

• Handle the non-functional requirements.

• Handle the modern software artifacts.

In the next chapters NAFPA will be tested by applying it in a real
software development project.

58

Part II

A P P LY I N G N E S M A A G I L E F PA

In this part of the thesis we will validate the NESMA Agile
FPA method by performing a case study on a software
project developed in an Agile development. Each sprint
will be counted to see the development and adjust the
scope. Afterwards the project will be analyzed using the
values obtained.

10
P R O J E C T A N D A P P R O A C H

10.1 case project

The project that was used as a case study for validating our results,
is a portal application developed in JAVA meant for Employee Health
Management (EHM) in large organizations. The web application frame-
work LifeRay will be used as the backbone for development. Further-
more, different JAVA portlets with standard functionalities developed
by ISDC in the past will be introduced to save time. The project was
done from March 28th 2012 until October 1st 2012 and was supposed
to last 3 sprints. In the final stage (User Acceptance Test) changes
were still being implemented. Therefore this was counted as a virtual
’sprint 4’ . The counting and validation was done from December 2012

until March 2013. It would have been preferable to test these assump-
tions in a live environment, but time restraints and other practical
issues did not permit this. The following assumptions were made
and verified to make sure it can still serve as a valid test environment
for the proposed approach:

• The beginning of the project was well documented and could
serve as enough input for a detailed estimate.

• The changes occurring during development were well kept in
an issue tracking system.

• There was a project member (requirements engineer) available
to test assumptions and ask questions that was highly involved
in the software development project.

• The project was counted chronologically, which means first the
high level estimate was done and then the sprints were counted
in chronological order.

Some changes with regard to the proposed guidelines had to be im-
plemented which will be discussed in the next chapter.

10.2 approach

The approach to be followed is the one discussed in the previous
chapters. As usual for each method, a method provides a guideline
that should be tailored to the context. This case was not so different.
For each project a counting approach should be thought of. In the
case company this is usually done at the beginning of the project in
agreement with the team members and a QA officer.

In this case, the following was decided:

a. As the requirements documentation was of high quality and
detail, the estimation would be done using the detailed count.

60

This is unfortunate because this means that the possibility of
using the functional areas as discussed in section 6.3 cannot
be tested in this thesis. This part of the method is therefore
discussed in future research.

b. As it was a portal application, some functionality would come
out of the box. For portal applications an approach was dis-
cussed to divide the work in a way that would justify the differ-
ence in hours. This could be done by dividing the functionality
in three segments: ’Modification’, ’Development’ and ’Configu-
ration’ as was discussed in 8.3. Because the historical data did
not allow a clear distinction between modification and devel-
opment, this was combined in one segment. This left only two:
Out-of-the-box (OOB) or Development ’DEV’. Please note that
as an alternative, the hours allocated to a single Function Point
could also be adjusted.This would make sure to make sure the
fact that parts of the application should require less program-
ming is taken into account in the whole. This is a more raw ap-
proach, which is less time-consuming, but does not show which
specific parts would take less time than others. Also when com-
paring different project the extent to which re-usable compo-
nents are used will not be taken separately. On the level in
which we specify the size of each user-story or as we will see
beneath the modules, this is mandatory. A user-story about Lif-
eRay standard functionality should not be treated the same as a
user-story about a brand new module to be developed.

c. User-stories were not counted as such, but a more coarse-grained
approach was taken to separate different ’modules’ The way
the stories where put did not allow us for a separation in user-
stories as proposed in section 6.2 instead we looked at each
functional process separately and divided the project in more
coarse grained ’modules’. This was chosen because even though
in the case company there is a lot of understanding about scrum,
this is not always the case for the clients. The ’stories’ in the
end respected more the different tasks resulting from the Work-
Breakdown structure and referred to the requirements docu-
ment than it respected the actual format for user-stories. This
made sure that no clear user-stories in the form proposed were
available in this case. The modules were constructed based on
grouping on functionalities and the different ’objects’ in the re-
quirements. The method developed in the previous part was
done based on the general specification of a Scrum project and
as with every method should be flexible enough to be adapted
to different contexts.

With these project specific modifications in the method, the estimates
and tracking of the project progress was started.

61

11
E S T I M AT I O N S AT S TA RT O F P R O J E C T

11.1 pre-sales

First a count was made of the Pre-sales, as would be expected to
be the case when a whole estimation process is done using software
sizing. Therefore an estimated count is done on the high-level require-
ments as received from the customer. The goal of the measurement
is the estimate the effort that should be done and the final size of the
product on completion of the project. This count was based on the
following very detailed documentation:

• The technical documentation

• The functional specification

• A mock-up of the functionality requested

• An overview of the screens requested.

This Pre-sales count resulted in an estimate of the the following val-
ues:

Kind FP DATA FP TRANSACTION Total

DEV 49 486 492

OOB 57 138 226

Total: 106 624 730

Table 8: The Pre-Sales count of our case project, divided in Development
hours (DEV) and Out-of-the-box hours (OOB)

An amount of hours could be attributed to the counted FPs for
estimation purposes. We chose to this respect:

1. 5 hours development for Development hours (about the com-
pany average for JAVA development, which usually has some
ready-made components as well)

2. 1 hour development for OOB hours (time taken to configure,
this was a guess without any real foundation, as this is the first
time in this context an estimate is performed in this way)

This would mean 2870 hours of development pre-estimated. The hours
for testing, requirements analysis and all other factors are derived
from the development hours estimated. This is company, project and
team specific and is therefore outside of the scope of this investiga-
tion, which will focus merely on the development hours.

62

11.2 planning

After the Pre-Sales count a planning was made to divide the function-
ality over the sprints.

The planning was already done, as a past project was used. Even
though the information from the count may have lead to another divi-
sion of tasks, the planning already made was taken to see how this re-
lated to the functionality. This resulted in the following figures, which
can be seen in table 9.

Sprint type FP DATA FP TRANSACTION Total FP Total Hours

1
DEV 29 146 175 875

OOB 29 23 52 52

tot. 58 169 227 927

2
DEV 20 205 225 1125

OOB 14 4 18 18

tot. 34 209 243 1142

3
DEV 0 135 135 675

OOB 14 111 125 125

tot. 14 246 260 800

Total 106 624 730 2870

.

Table 9: The planning as made by the project team, divided, sized and with
estimated hours according to the FP count.

In the table something strange is shown. In a normal project, one
would expect the velocity in the sprints to increase slowly. Therefore
also the amount of hours planned should be either relatively stable
over the sprints climb. In this case, the functionality implemented
is increasing over the sprints, but the amount of estimated hours is
unstable. This is due to the choice we made to make the distinction
between OOB and DEV functionalities and the fact that the team or
team leaders did not take into account the same measures, as WBS
and expert judgment was introduced as the input to the planning.

The first count serves as a similar idea of a quantified product back-
log and it will be divided in 3 sprints accordingly. The planning in
Function Points for the different sprints will be taken as the baseline
and will be adjusted during the project.

63

12
S I Z I N G D U R I N G P R O J E C T

In this chapter the result is shown of the sizing done during the
project. This theoretical means: after each sprint the functionality de-
livered is counted. In practice this was simulated. As timing issues
did not allow a clear count done after each sprint in a live project. An
old project was given and with help of documentation like the issue
tracking done during the project and with help of a member of the
team, a simulation was made of the different sprints and the activities
performed during development.

Even though this would not reflect reality as much as to do the
actual sizing of the software delivered, it gives us enough ground to
explore whether it makes sense to size a project using the proposed
method.

For each sprint we will perform the following steps:

• Look at the actual developed functionality compared to the es-
timated one.

• Look at the actual hours made and the estimated amount of
hours.

• Determine the project progress

• re-estimate the remainder of the project.

• Determine the functional velocity of the sprint.

12.1 sprint 1

In sprint 1 a basic function point count was done, as we assume there
is no developed code to change yet. The first sprint took place from
March 28th to April 17th 2012. In total 860 hours were made during
this interval.

The following FP values were counted:

Kind FP DATA FP TRANSACTION Total

DEV 47 172 219

OOB 22 18 40

Total: 69 190 259

Table 10: Actual result in FP of Sprint 1

While the estimate was in fact:

64

Kind FP DATA FP TRANSACTION Total

DEV 29 146 175

OOB 29 23 52

Total: 58 169 227

Table 11: Original estimate in FP of Sprint 1

This means that 14% more functionality was developed than planned.
Furthermore there was more developing done than out of the box
functionality than initial estimated.

Now the scope can be re-evaluated, the progress can be determined
and we can evaluate the original estimate. Furthermore by looking at
the hours we can calculate a value similar to ’velocity’ as it is done in
SCRUM.

Project progress

The results obtained from the first sprint would give us an indication
of how far we are in the project. This can be quantified in a percent-
age of the work done compared to the work that should be done to
finish the project. In terms of size, this is: FP developed / FP to be be
developed.

FP to be developed was originally 730, but we can re-estimate this
to take it into account. For this we use the proposed method and we
assume that, as always, the truth is black nor white and lies some-
where in the middle. To makes this clear the three assumptions are
made to re-evaluate the scope, as was proposed in 6.4.

1. The ’wrong estimate’ or ’ahead of schedule’ assumption. The
scope remains unchanged: 730.

2. The ’incident’ assumption. This means that an extra 32 FP is
added to the end-goal, which makes it 762.

3. The ’representative for project’ assumption in which we assume
that there was a scope creep of 32/227≈ 14% and we expect that
this will be done as well for the end-functionality. This means
the end scope will grow to 832 FP.

So we see that through these 3 methods the progress can vary be-
tween 31 and almost 40 percent and the end-scope will be between
730 and 832 FP. There are in general two approaches to this handling
this uncertainty. One is to work with ranges. The range [730 - 832]
would be the end-goal. However to make it easier, we will take a
weighted average, with the weights: 0.2, 0.3 and 0.5 as this is a rough
estimate on the likelihood on all three assumptions. In practice, these
should be filled in by either the judgment of the team or some experts
or a benchmarking system has to be used to validate these constants.
The following values were calculated:

65

End goal estimation method 1 2 3 Weighted Avg. end goal

End goal FP 730 762 832 791

Developed 259 259 259 259

To be developed 471 503 573 512

progress in % 39.6% 34.4% 31.1% 32.7%

Table 12: Evaluating the end-goal in FP for the following sprints after sprint
1

If we take this weighted average of the end scope, which amounts
to 791, we see an increase of 8.4%. This gives us a progress of 32.7%
and the estimated remaining amount of FP to be developed is 532 FP.
Given the fact that productivity tends to increase over sprints, this
is a reasonable guess. This way of determining the end-goal will be
repeated throughout the other sprints.

Adjusted estimate

This adjusted estimate is an increase of 8.4% on the end goal. This
means that we can adjust our original estimate for the remaining
sprints:

This is done by comparing the end-goal to the other estimates. It
shows an increase of 29 FP, which we divide evenly among the esti-
mates.

The adjust estimate can be seen below. In hours, using 5 hours/FP
this means that 70 hours need to be probably made extra for sprint
2 and 75 hours for sprint 3. The results of this re-estimation can be
seen in table 13.

Sprint FP estimated FP re-estimated Hours re-estimated

2 243 257 1212

3 260 275 875

Total Todo 503 532 2087

Table 13: Re-estimation of the following two sprints after sprint 1

What happened can be easily displayed by using a burn-down
chart, in which we clearly see the scope increase and the remaining
functionalities still to be implemented.

66

Figure 19: Burn-down chart after the first sprint

Functional Velocity

As is usual in sprints, the velocity should be determined for estima-
tion and productivity benchmarking purposes. The amount of devel-
opment hours used for this sprint was:

860 / 259 = 3.32 Hours per FP. Which were a bit less than the
average counted at the company. Unfortunately the hours spent on
each DEV / OOB were not available. This means that this would be
solely used for estimating purposes.

12.2 sprint 2

Sprint 2 took place from April 18th until May 8th 2012. In Sprint 2 we
counted the added functionality as enhancement on the first sprint.
This lead to the following values.

Kind DATA TRANSACTION Total FP Total EFP

FP EFP FP EFP

DEV 15 21.25 199 199 214 220.25

OOB 17 17 14 14 31 31

Total: 32 38.25 245 251.25

Table 14: Actual values from Sprint 2

The re-estimation of the scope for this sprint was 257 FP, While the
original estimate was:

Kind FP DATA FP TRANSACTION Total

DEV 20 205 175

OOB 14 4 52

Total: 34 209 227

Table 15: Pre-Sales Estimated values Sprint 2

67

In which we assume that the functionality developed more was due
to implicit client changes or underestimation of the function points
before.

The total product size at the moment is 503 and the total developed
size is 510.25 A 2% difference. The product size is 503 instead of the
estimated 506, which is a difference of around -1%, and therefore too
trivial to change anything. A 2% difference for the end goal would
mean 801 EFP at the end.

This gives us a more interesting result, not only do we have a (small,
even negative) difference in the number of function points developed
vs estimated. When we compare this to the effort (Enhancement func-
tion points) we see that in the end more effort needs to be done to get
to the end-goal, even though the scope decreased.

Project progress

Regarding the project progress, again we can make the same adjusted
estimated as performed after sprint 1.

Again we can make the same assumption as in the previous sprint,
we see here what happens when the estimated functional increase
was more than the actual one and how to handle the developed size
vs. the product size.

1. The adjusted scope remains unchanged: 791. The EFP adds to
801, because the 10 extra FP were done, so they will be present
as well in the end.

2. A deduction of 6 FP from the end-goal which amounts to 785.
On the other hand, 10 EFP are added to then end goal EFP, for
the same reasons as mentioned above.

3. The scope did not creep, but shrank with -6/500 = -1% and we
expect that this will be done as well for the end-functionality.
This means that the to be developed will 795-500=295 - 1% =
262. Besides this we assume that the EFP percentage of 10/241

= 4.15% will be valid for the last sprint as well. This means 262

+ 4.15% = 277, which we will add to the already existing 510 =
787 EFP.

For the percentage of completion, we can make an approximate end-
goal visible. However, we have two end-goals now, the product size
as well as the developed size.

With other words, the result of this sprint have little impact on
the project progress. However, given the average, we could adjust the
estimate for the rest of the sprint again.

Given the 775 as end goal, still 272 FP has to be developed. Given
this assumption on the EFP this would mean 282 EFP To be devel-
oped. This is an increase of the original 800 hours planned with 110

hours.

68

End goal estimation method 1 2 3 W. Avg

End goal FP 791 785 762 775

End goal EFP 801 795 787 792

Product size 500 500 500 500

Developed 510 510 510 510

% Done FP 63.2% 63.7% 65.6% 64.5%

% Done EFP 63.7% 64.2% 64.8% 64.4%

Table 16: End goal re-evaluation after Sprint 2

Sprint FP estimated FP re-estimated EFP re-estimated Hours re-estimated

3 260 275 282 910

Table 17: Re-estimation after Sprint 2, Sprint 3 is re-estimated

Adjusted estimate

Given these facts we can also adjust the estimate again and display
the progress in a burn-down chart.

The hours for sprint 3 will increase with 35 hour due to the 7 extra
FP on the EFP.

Figure 20: Burn-down chart after sprint 2

Velocity

The Velocity in this sprint was 1190.5 / 241 = 4.93 hours / FP and
4.74 hours / EFP. This is an increase of the previous sprint and given
the OOB/DEV division made, should be about the velocity estimated
in the planning stage.

12.3 sprint 3

The last planned sprint was done from May 9th until June 10th. No-
tice that this sprint took longer than the other sprints. This is remark-
able as sprints normally span roughly the same period.

69

Kind DATA TRANSACTION Total FP Total EFP

FP EFP FP EFP

DEV 7 14.5 51 51 58 66

OOB 14 14 209 209 223 223

Total: 21 28.5 260 260 281 289

Table 18: Actual values Sprint 3

The re-estimation gave us 275 FP and 282 EFP. The original estimate
was:

Kind FP DATA FP TRANSACTION Total

DEV 0 135 135

OOB 14 111 125

Total: 14 246 260

Table 19: Pre-Sales Estimated values Sprint 3

Re-estimation for this sprint seemed to have at least some effect.
In this Sprint some new functionalities were developed that were

not in the original requirements. We know this because of proper
change management in the project itself.

Even though the estimates and the development makes sense and
we basically got to the latest estimated end-goal or even further, a
lot of functionality was not implemented the way the customer saw
fit. During the user acceptance test, quite some functionality was still
implemented. In a normal ’live’ situation this should have been han-
dled by doing an additional enhancement count. However, unclar-
ity in documentation and time issues did not allow this to happen.
Therefore the last part will be considered as an extra sprint in which
the changes that were unforeseen where implemented. Note that this
means that even though the project until sprint 3 seemed to be on
schedule, the unforeseen UAT which was originally intend to be used
for bug fixes, makes sure that the end amount of functionality as well
as hours got higher than estimated.

The burn-down chart could be displayed as well.

70

Figure 21: Burn-down chart after sprint 3

Velocity

The Velocity in this sprint was 1995 / 275 = 7.25 hours / FP and
1995/289 = 6.9 hours / EFP. This is an increase compared to previous
sprints and can be attributed to an increase in bug fixes that needed
to be done for the previous sprints, these take time away from the
developers, but should not be taken as any functional change, as they
are merely a quality issue.

12.4 user acceptance test (sprint 4)

The user acceptance test was the time when the development should
be done, but it would be tested thoroughly before going live. This
lasted from June 11th until October 1st 2012. The work done during
this period were mainly bug fixes, which should not contribute at all
to any change in functionality. Besides that also some changes were
implemented, these will be counted here.

As this was anticipated before by the project team, this would nor-
mally mean that there should be another estimate done. Due to the
fact that the project information provided was not clear enough on
what the status was of these changing before starting the UAT, this
could not be done. This was merely counted as the extra effort it took
to complete this project. Furthermore as this project would be the
base of several other enhancement projects, this would give us in the
end the baseline for these future enhancement projects as well.

In the end, the added functionality in this phase of the project was:

Kind DATA TRANSACTION Total FP Total EFP

FP EFP FP EFP

DEV 0 6.3 51 91 51 97.25

Total: 826 896

Table 20: End result of the last part of the project: the size growth during
the User Acceptance Test

71

3099.75 Hours were spent in the UAT period, giving us a productiv-
ity of 60.8 hours / FP or 31.9 hours / EFP. These figures are extremely
high, which is caused by the work done in the UAT mostly concerned
bug fixes.

The final burn-down chart looks like this:

Figure 22: Burn-down chart after sprint 4

As stated before, the changes in the UAT, in the context of this
research were not taken as estimations, but they were counted in the
end, as they are a vital part of the project. This makes sure that the
last two columns show nothing as To Do value, even though the Done
part of the project is increasing.

72

13
P R O J E C T E N D

Now that the project is done we can analyse the results and the infor-
mation obtained from the project. The rework in terms of functional-
ity of the entire project was 8.5% which is extremely low for a project
that was perceived by its team members as chaotic and unpredictable
and with a client that changed their mind quite often. On the other
side, a bit of the chaos can be uncovered by comparing at the original
estimate with the product size: 730 vs. 826 which is not a huge in-
crease of functionality either. 730 vs. 896 for the effort together make
an increase of 22.7%, which is still acceptable given the fact that an
increase could be considered usual.

Even though the SCRUM method and division in sprints were used
during development this project could not be considered to be Agile
in its total form:

• The requirements were very detailed from the start.

• Changes were introduced in the project and handled, but mostly
implemented in the end.

• The software delivered at the end of each sprint still had a lot
of rework to be done and bugs to be fixed.

It is for this reason that the tracking and scoping was not as successful
as expected.

13.1 analysis using nesma fpa

In the end of the project it is possible to analyze what happened in
terms of size increase and effort during the project, how this related to
the first estimations and how the productivity can be defined in terms
of added functionality. Furthermore we could adjust our estimates
during the project and take into account an average productivity to
adjust the estimate in hours.

13.1.1 Analysis on size growth.

A lot of different yet resembling figures have been collected over the
course of the sprints. While these were handled during the sprints, at
the end of the project they should be used for evaluation and bench-
mark purposes, the latter being only applicable when more projects
are done or will be done using similar sizing techniques.

The size growth can be analyzed and displayed in several ways.
Some will be explored here.

For benchmarking the following figures should be important:

73

• The product size vs. developed size, to relate in an increase in
hours with the increase in changes.

• The estimated size vs, the actual or developed size in hours as
well as EFP.

• The ’velocity’ in general of this team.

We will see that not all of these metrics show what we would expect.

13.1.2 Analysis on module level

Now that we did several counts, we can analyze the difference in
size in the module level, this will give us an overview of what parts
of the software were specifically difficult to predict or develop. This
will explain the size difference in an understandable way and gives
an quantification to use when discussing with the client which parts
were specifically bound to changes or bigger / smaller than initially
anticipated. This can prove useful in deliberation, as a background
for the analysis or for benchmarking purposes.

Figure 23: Module-level analysis on estimated size, product size and devel-
oped size

Now we can clearly see what influenced the growth. Interventions
for example, got a lot bigger than it was estimated to be, this was
because intervention packages entered the product, and these were
not explicitly specified before. Seeing these differences does not imply
that we have a clear reason for the differences occurring here, as there
are several reasons why a change can occur the way it did:

• There was a mistake made in the estimation, counting might
not have been done in exactly the same way.

• Some functionalities got attributed to a different module while
counting them post-sprint. (see language and session for exam-
ple)

74

• Architectural choices leading to a lower count: EIF instead of
ILF, external module which takes away functionalities from the
counting scope.

• Functionalities were added in grooming sessions or talks to the
client.

The only way to make this distinction is having change management
and decent issue tracking in place as well as awareness in the project
team about these aspects when in conversation with a client, so no
functional changes are made disguised as bugs or misunderstood re-
quirements. This overview could give a reason for the project man-
ager to investigate things further in case some growth in modules
was overlooked.

13.1.3 analysis on productivity

When we look at productivity as discussed above we have the fol-
lowing figures, obtained from measuring the product size, developed
size and the hours made in the sprints:

Sprint FP EFP Hours

1 259 259 763.25

2 241 251 1130.25

3 275 289 1807.25

UAT 51 97.25 3099.75

Total 826 896.25 6800.5

.

Table 21: Analysis on the FP developed and the hours made during the three
sprints and the UAT

This gives us the following values for the overall productivity. :

• The overall productivity in FP is 8.2 hour/FP

• The overall productivity in EFP is 7.6 hour / FP

When looking at the total average this is a big higher than the average
in the company for JAVA projects with re-used components, which is
around 5 FP, as pointed out before. According to some websites the
industry average for JAVA supplied by ISBSG1 is 10.6 2 so from that
respect it is not too bad at all and more importantly for this research,
it seems to be a valid result.

When looking at how the productivity developed over the course
of the project, it is best to do this in FP or EFP per hour. Normally
velocity is also put in hours / FP. This would lead to a strange visual-
ization. If one would go from 3 hours / FP to 6 hours / FP. Visualizing

1 ISBSG is the biggest repository on function size available, it can be found at:
www.isbsg.com

2 Taken from: http://www.drdobbs.com/jvm/the-comparative-productivity-of-
programm/240005881 retrieved: 17/5/2013

75

Figure 24: Functional productivity in FP/Hours and EFP/Hours for three
sprints and the UAT

it would show an increase. In terms of velocity or productivity this
can be misleading as the productivity is decreasing, not increasing.
When calculating the productivity figures we see the the following as
visualized in figure 24.

This is a peculiar result, as ’velocity’ as proposed by the SCRUM
method, should make sure that productivity should be increasing
and moving towards a point of ’hyperproductivity’. When looking
at more detailed data from the project, the reason becomes apparent:
The more software developed in previous sprints, the more bug fixes
that can occur in the following sprint. This is done to the point of the
UAT, where all the changes and remaining bugs are resolved. This
leads to a lower productivity in FP, as no functionality is added or
really changed in the process, but a large number of hours are spent
on development. To some extent this could be covered by FPA as well,
if we count the bug fixes as one or a few DETs, FTRs or RETs changed
without any impact on the functionality, we would still get some EFP
value for it. This would mean that bug fixes are counted as part of
productivity and normal development. This intrinsically means that
providing low quality software could improve productivity, which
is not recommended. It also shows one big advantage of the method.
The power to make clear what in terms of extra hours could be due to
the supplier (mistakes in earlier development) and what is due to the
client changing their mind. This is not different from the usual change
management, but could be used to check this change management or
quantify it to greater extent.

76

14
R E C A P

A case study was on a project in the range of 700-800 FP. In fact 720 FP
was the initial estimate, but 850, FP were developed. Due to changes
during development the EFP counted was 896.3. This was an increase
of roughly 24.5% in development. If this would be true for effort as
well, it would be great, as IT projects normally are bound to go over
the original estimates this would be a good score. Unfortunately this
was not the case. The original estimate using NESMA FPA was 2870

while the actual hours made were 6800.5. This is an increase of 137% .
Even though the original estimate in expert judgment was even worse
with roughly 1955 hours.

The project needed some modifications from the method proposed:

• The requirements were detailed from the start already, so using
indicative or estimated FP was out of the question.

• It was a portal application with out of the box functionality
using labels on the functions to separate out of the box functions
from actual development

• The user-stories did not have the right granularity to make them
suitable for grouping. Comparing was done on modules instead
of user-stories.

In the project we have seen increases as well as decreases in the func-
tionality estimated vs. the functionality developed, we have seen dif-
ferences in the productivity and even the length of the sprints in time.

Even though the project used in the case study could not be consid-
ered to be fully Agile, it does show some remarkable things:

• Velocity in terms of functionality is declining while velocity is
normally increasing to the points of hyper-productivity when
looking at the normal way SCRUM is advertised.

• the difference between the EFP and FP is relatively small, which
is caused by most changes occurring before the functionality is
developed and therefore it is not counted as an enhancement as
such.

• The difference between the estimated functionality and the de-
veloped functionality shows an increase of 15.3%, while the
amount of hours spent show an increase of 237 % This means
that the estimation power of estimating FP is bigger than the
estimation in hours using FP analysis. This will be elaborated
upon in the next part.

Reasons for these phenomena are widespread, but the main concern
seems to be a lack of Agile maturity in the team-client combination.

77

While implementing new functionality, a lot of bug-fixing was still
done on the functionality delivered in previous sprints. These hours
were not allocated to the sprints in which the functionality was devel-
oped.It might be interesting to do this, but it should be done outside
of this thesis, as time and information available did not allow us to
easily get this information.

78

Part III

VA L I D AT I N G N E S M A A G I L E F PA

Now that the method is tested in a case study, the original
research question can be answered. First the estimations
are critically looked at. Then, the effort of the measure-
ments is inventarised. Flaws and points of improvements
that were found will be stipulated. After drawing our con-
clusions, the research itself will be critically discussed and
future research ideas will be given.

15
I N T E R P R E T I N G T H E R E S U LT S

In the previous chapter we have shown the measurements done in our
case study, which was a project done in three sprints. Some additional
work done in the User Acceptance Test. We have seen that it was pos-
sible to connect the quantity of functionality delivered with the esti-
mates done in the sprints and to the original estimates. Furthermore
scope creep could be anticipated upon and we came to some produc-
tivity measures that can be compared to other projects and even other
companies.

15.1 accuracy of estimations

Now we can interpret the results of the case study and draw conclu-
sions regarding the proposed method. When we look at the actual
project estimate, we see that the original estimate was 1700 hour with
15% risk percentage so this makes roughly 1955. The estimation done
in FPA was around 2870 hours. This is quite a difference. The similar-
ity is this respect is the fact that both estimates differ from the actual
value to great extent.

When looking at the accuracy of the estimations and re estimations
done regarding the (enhanced) functionality we see the following:

Sprint FP est. EFP est. 2 EFP est. 3 Total EFP dev

1 227 259

2 243 257 251

3 260 275 282 289

UAT 0 0 0 97.25

Total (scope) 730 759 792 896.25

.

Table 22: Overview of the different sprints and the three chronological effort
estimations in hours in EFP

As was clear from the previous chapter, due to changes being de-
layed to the point of the UAT, the estimates in the end were quite
different from the end result. On a positive note, what can also be
seen is that for the sprints, the re-estimates were getting better with
each estimation. For the total, they were note.

If we would do the same for the hours, a totally different conclusion
can be drawn:

80

Sprint Hours est. 1 Hours est. 2 Hours est 3. Total Hours

1 927 763.25

2 1142 1212 1130.25

3 800 875 910 1807.25

UAT 0 0 0 3099.75

Total 2870 2850 2803.5 6800.5

.

Table 23: Overview of the different sprints and the three chronological effort
estimations in hours

As was clear from the previous chapter, the amount of hours were
mostly made in the last sprint and the UAT. As the functional size
seems to be crawling towards the actual result. the hours made in
these sprints sure were not. Less functionality was developed than
anticipated in sprint 2 and less hours were made than anticipated in
the first two sprints. This makes sure that actually the accuracy of the
estimation in hours during the sprints becomes less.

When looking at the estimations and its accuracy it is important
to make a distinction between the accuracy of the estimation in func-
tional size and the accuracy of the estimation in effort.

The accuracy will be determined by calculating the estimated val-
ues with the actual value, using the following formula:

Estimated−Value
Real−Value Independent of what these values are.

This can be compared with the cone of uncertainty as explained in
section 2.2 about estimation.

From the previous interpreted results we already know that all the
estimates were below the actual values, therefore only the below part
of the cone is displayed, this will give us a good overview on how the
estimates are relation to the ’rule of thumb’ of the cone of uncertainty.

One difficult thing is that the cone of uncertainty was originally de-
veloped for waterfall projects. This is solved by mapping the stages
of the cone of uncertainty to the different sprints.Assuming that dur-
ing development, the developers are mostly doing development and
test on the functionality they selected as user-stories with the high-
est priority, the functionalities in the future sprints might be defined
only as (high-level) requirements. Given that the developed part of
the solution will become bigger over the course of the project and the
to-be-defined or to-be-designed part gets less, a correspondence with
the stages pointed out by the cone of uncertainty can be made. To do
this, the following reasoning is applied:

a. Sprint 0 is the Pre-Sales count done. This should be related to
’planning and requirements’ as the requirements were the in-
put to this first count. As we know the requirements were quite
detailed from the start, it might have been more similar to the
product design stage. However, uncertainty about some deci-
sions and the actual architecture compensated for this. Never-
theless the cone of uncertainty might be considered a bit pes-
simistic in this respect.

81

b. Sprint 1 is related to the product design stage, as was specified
above. The fact that development and test was already done for
less than one third of the application, is compensated by the fact
that the remainder of the project needed further specification.

c. Sprint 2 is related to detailed design for the similar reason as
for sprint 1.

d. Sprint 3 is related to the development and test stage, in that
stage development and testing was done on all parts that were
not developed yet.

e. Sprint 4 is the end of the project, therefore it is always 1 and
mapped to the project end. All estimated end here.

Given the choices made in this mapping, one would expect the values
to fall inside the cone as the stages in waterfall should have more
insecurity at those given moments than the sprints. The result can be
seen in figure 25.

Figure 25: Visualization of the cone of uncertainty with the re-estimates
of the end-goals over the course of the project. With hours in
NESMA, the original EJ estimate and the FP and EFP values

Looking at the estimate for the final size in Function Points, we
see that they fall within the cone. This is by all means a good result.
One side-note is that the estimations do not improve over time and
even get less. This is due the most of changes being done at the end
during the user acceptance test. Furthermore, in the second sprint
less FP were developed than estimated compensating for the creep in
scope from the first sprint.

The hours estimate using FPA and Expert Judgment, is below the
normal cone. This means that the estimating power in this case was
less than expected. This is due to the fact that there were more bugs
than usual in the code as well as a supposed underestimation of the
productivity in general. The estimation does not improve, until sprint
3. This improvement is mostly due to the amount of hours made
exceeding the amount of hours estimated until that point.

82

When looking at the estimate for expert judgment we see that cer-
tainly at the beginning, this is the worst estimate. This is could be
due to the complicated nature of the project done and the same un-
derestimation as was the case for the hours estimated with NESMA.
Unfortunately due to restrictions on the available data it was not pos-
sible to re-estimate using planning poker. . Therefore the initial Expert
Judgment estimation was kept.

15.1.1 Using the Function Points as a tool for contract negotiations.

When the assumption is made that all the quantified extra work done
is actually used in the contract with the client, we can retrieve the
following information:

• The amount of hours estimated of 2870 were based on the esti-
mate of 730 FP

• The actual developed functionality was 896 EFP. These are 166

FP extra.

• The supposed rate of 5 hours / FP would mean that the client
got 830 hours of extra rework, regardless of the fact of the
client wanted that extra functionality, which as is assumed he
did. This should always be covered by proper change manage-
ment, as was the case in this particular project. Even when FPA
can help determine the functional rework, it should never make
proper change management obsolete.

This means (hypothetically) that 3750 hours are accounted for by the
client, as he got more functionality than was agreed on and the clients
accepted the rework. That leaves 3090 hours for the supplier. So out
of the 3920 extra hours made on this project, 830 will be paid for
by the client and 3090 will be for the account of the supplier. The
client and supplier might choose a different velocity to calculate with,
which could be closer to the reality. This makes contract negotiation
fairly simple and would provide a fair base for the client-supplier
relationship. Whether the supplier would be satisfied in the above
example is doubtful. What is not taken into account in this example
is the changes made before development. It might be the case that
strategy or the software architecture can change dramatically without
it having the impact accounted for by functional size. In the project
suddenly the change was made from having email functionality, to
using a reusable component for emailing with templates for example.
Even though no functionality has been implemented, other designs,
researches or mock-ups made by the team were in vain, even when
they never reached the point of being implemented totally. These are
hours made by the team which are not accounted for by functional
size, but for sure could be billed to the client.

Whatever the client and supplier decide, at least there are some
quantified measurement available to help them see how to distribute
the project costs, if necessary.

83

15.2 effort of estimations

In this section the effort to work with NESMA in the way proposed
will be discussed and compared with expert judgment.

We see that expert judgment for a project this size should be about
1-3 experts, providing expensive hours 4 hours of preparations and a
workday of deliberations.

Function point counting depends on the quality of the documen-
tation but could be estimated at around 500 FP in a day by experts
1

.
In the case this was a lot less due to the counter being novice.The

fact that in the proposed method of using FPA, the following needed
to be done:

• Make sure the functional processes counted were either OOB or
DEV.

• Count every functionality twice (one for high level, one for after
- sprint) means that the counting effort will be at least double.

• Count the right enhancement for the changes

This made sure that the counting done in surpasses all the other
counts for the other projects in terms of effort needed to do the es-
timations.

In fact, in principle it could be about 3 times the effort of a nor-
mal function point count. At least everything will be counted twice,
sometimes even more rigorous.

In this case we estimate the total effort to be 720 for the high level
count is about 12 hours.

For the sprints with enhancement this would be 896 which is about
14 - 15 hours.

Taking into account that all 5 counts done entail starting and finish-
ing those counts, some extra hours might be added to the whole. This
amounts to about 30 hours. That would be the investment of counting
hours proposed in the method. If done by a person with enough expe-
rience in counting function points. Whether this is worth is depend-
ing on the opinion of the organization that would like to use NAFPA.
For expert judgment the counting time might be less, the hours will
be more expensive due to the experts often being on a high position
in the organization. Not too mention, the scarcest resource in terms
of experts is the time they have available. The methods proposed in
SCRUM encourage people to work together and get to a common
understanding, not only about the estimates, also about the require-
ments. This is something FPA normally does not provide. The counts
are typically done by one person.

1 Due to lack on proper sources regarding the effort it takes to count
FP, the estimates here are taken from the LinkedIn group on Func-
tion Point Analysis where the experts said either between 150-900

FP per day, or around 500 per day. The could be accessed by
http://www.linkedin.com/groupItem?view=&gid=90250&type=member&item=255821099

when being a LinkedIn member.

84

 http://www.linkedin.com/groupItem?view=&gid=90250&type=member&item=255821099

Furthermore, from a personal account, the analyst in the case study
did not think the counting was a very pleasant task to do. This could
be contributed by the fact that the analyst had no real connection
with the project, or it is simply personal preference. Fact is, that it
is a tedious task to perform which offers no certainty on the correct-
ness of what the analyst is doing. This might improve over time after
getting practice. Comparing it to other measurements, when using a
measuring rod or ruler to determine length, one can be sure that this
is actually the length of the object. When using FPA, however the an-
alyst has no clear imagine of whether he is measuring correctly. Even
when writing down all assumption, fitting the reality to the method
. This uncertainty, coupled with a slow speed and the little impact
this measurement had on the company or the project, made for a
not so motivating environment to do the count. In chapter 17, some
guidelines are given regarding the analyst that could improve this.

85

16
A N S W E R T O T H E M A I N R E S E A R C H Q U E S T I O N

The research question will be answered in two parts. The first part
will focus on the fit of NAFPA and SCRUM regarding the process and
the meaning of the resulting values after using the method. The sec-
ond part will present the flaws the NESMA method has that should
be solved to improve the efficiency and the resulting values of the
method.

16.1 suitability of nafpa in scrum .

Applying the method we have seen that to some extent it is possible
to:

• Quantify the scope and the functionality requested and deliv-
ered.

• Track project process and take scope creep into account during
the project.

• connect high level estimates to the in-sprint estimates and the
actual work done

• See the amount of rework done during development due to
functional changes. (functional productivity)

However, we have also seen that there are some shortcomings in the
method. The technical details will be explained later. In general:

• The rework seen was very small as compared to the actual re-
work as perceived by the team

• The correlation to the amount of hours per function points with
the estimated one showed a negative trend. From the outlier 3

hours per FP at the beginning, to the outlier 60 hours / FP at
the end.

• The actual work done and re-estimate had little influence on the
re-estimates.

What this means is the following:

16.1.1 Function points show merely the functionality developed

The function points show merely the functionality developed. What
this means is that all the unfruitful hours spend by the team research-
ing things and trying out different things are not included.

All the changes made in the architecture and the consequences
thereof are not taken into account either. As soon as a piece of soft-
ware is developed and then it is has to be remade, only then it add

86

to the developed size. This is important to take into account when
looking at the measurements done. The rework in the case was little
compared to the functional size. The project however was perceived
as being extremely chaotic and full of changes.

The rework done which is counted by the method only applies if
the following is true:

• Functionality has been delivered at the end of a sprint N.

• A change was made in this functionality in a sprint > N.

• The change was not the result of a bug-fix.

All the other changes along the way are not taken into account. This
in important to keep in mind.

16.1.2 Bug-fixing previous sprints leads to messy Agile practices

What was shown in this project is something which happens quite
often: after the first and second sprint, in the following sprints the
developers are still bug-fixing functionalities that have been done ear-
lier.

This works for the customer as well as for the supplier, as the cus-
tomer will get better quality software and the supplier will have more
billable hours. This is not compatible with the method, in which func-
tionalities are clearly split among different sprints. The result is that
when not working according to strict incremental software develop-
ment with a strict definition of done. When bug-fixing becomes more
apparent, along the project less and less new functionality will be
delivered. This goes against the very first part of the Agile principle
introduced at the beginning of this thesis: Working software over com-
prehensive documentation.

16.1.3 Great for functional scoping, not so much for hours.

We have seen in this project that the scope remained quite the same
while the hours did not. We have also seen that when comparing the
functionality with the hours worked on it the whole project seems to
make little sense. This was due to a number of factors, all explained
above. We have seen that to some extent the ’size’ of the project was
quite correctly estimated. The ’effort’ however was not. It seems that
there are more factors contributing to the effort part. To have func-
tional size as the only parameter to the parametric cost estimation
seems therefore utopian.

16.2 shortcoming of nesma fpa for the use in agile en-
vironments

While measuring the functional size of the project during the dif-
ference sprints, shortcomings where found in the NESMA method.
Those shortcomings either make it difficult to do the estimation in an

87

efficient way, or make sure there are some strange measurements in
the functional sizing done.

16.2.1 Separation of Data and transactions

The separation of data and transactions makes the estimation process
more lengthy and difficult than it could be. It is a constant struggle of
making sure the data and the transactions match each other. There is
a mutual dependency: Transaction function should in principle only
use DET and FTRs that are counted as well in the data functions.
Data functions should not have data counted that is not part of a
transaction function.

The data functions and their separation in external interface files
and internal logical files is clear in definition as well as in how to
apply it. Unfortunately in present times it is hard to make a distinc-
tion as software development has a more modular and integrative
approach than it used to. Interaction with different web-services for
example is hard to place in either EIFs or as input to and output
from the system as was made clear in section 8.1. According to the
standard there are clear rules regarding this, but it might happen
that during development this changes. E.g. the architect decides to
use some more components from another source than to actually de-
velop it. This might lead to a different interpretation and to a differ-
ent count. This is difficult and time-consuming, but when interpreted
well by all the rules of the method, could be possible. After all, in fact
there is less functionality developed when choosing an existing com-
ponent. Furthermore it is a matter of viewpoint whether this should
matter for the functionality delivered to the client.

Besides this, there is another rather odd behavior of this part of the
count. The method has strict rules about what should be considered
part of the same ILF or not. In these rules an ILF could be found
so large that it will span different sprints. When looking at the case
we see there that Health goal and interventions which are related to
each other. In fact, when deleting a health goal, also the connected
interventions are deleted. This means that this is one ILF according
to NESMA. When developing however, we see that the Health goals
are developed in sprint 1 and the interventions in Sprint 2. This was
handled by counting the health goals as an IF developed in sprint
1 and in sprint 2, the enhancement of adding the interventions was
added to this. However, when we would have also done this part
in sprint 1 and not sprint 2, this would have counted as merely one
count. This left us with the following values:

As compared to:
The amount of work in both situation should be about this same, as

about the same work is done by the developers. This shows that this
mechanism is in the basis not correct. The main problem is that data
can be built up gradually over the course of the project and it should
not take a lot more time to do so. Certainly not the amount of at least
30 hours shown above. With transactions this is different. It will not

88

Sprint FP EFP

1 10 10

2 5 11.3

Total 15 21.3

Table 24: The count of the Health goals with intervention spanning two
sprints

Sprint FP EFP

1 15 15

2 0 0

Total 15 15

Table 25: The count of the health goals with intervention spanning one
sprint

really happen for a transaction function to be done halfway through
one sprint and halfway through another. Even when it would happen
the same problem will occur. This will be to lesser extent because
the maximum size of transaction function is considerably less than
the size for a data function. Therefore the transactions are not a big
problem, but the counting of the data is a problem, which should be
solved somehow to guarantee an outcome of the FPA that is closer to
reality.

16.2.2 FPA Tables

FPA tables are somewhat special in the method. These are containers
for different data that is unrelated to the core data of the application,
but it is necessary to be stored. These could be restrictions on values
or the general knowledge in the application. An example of this is
the ’F’ or ’M’ value for gender, aliases for any other identifier and
other similar parts. This is manageable when estimating or doing a
final count, but difficult when measuring progress over the project. In
the case study the FPA tables were counted as being developed in the
first sprint. This could be incorrect in nature. Parts of the FPA tables
might have been developed later. The granularity is simply too coarse
to estimate this in detail.

The FPA tables are in that respect a disadvantage. It makes the
method more complex, making the analyst think about the data as a
possibility to put it in FPA tables as well. It could create false rework
if the development of the data in the FPA tables spans more than
one sprint. This happens in the same way as was explained in the
previous section.

89

16.2.3 the way EFPA looks at enhancements and counts.

There is something rather unusual in the way functionality is sized
when looking at the increase in size versus the enhancement size. It
could be that the functional size is not increasing but the enhance-
ment size is. This is fine, when changing functionality work has been
done, but the functional size might not be the same or even smaller.
This is the aspect that makes the enhancement count so valuable.
However the following can occur as well:

We add 1 DET to a functionality, which therefore gets a higher complexity,
but the enhancement size is smaller than the increase in functional size.

This could happen when for example we have an ILF with an aver-
age complexity, where 1 or 2 DETs are added. This is a small enhance-
ment, but might lead to the next level of complexity which results in
a higher functional size for the product. This increase is not visible in
the developed size for the same amount. In itself this is not a huge
problem as we can imagine we would also have no increase in prod-
uct size, yet we have an increase in developed size somewhere else
in the project. However in principle this would lead us to an end-
result where the difference between the added functionality and the
enhancement size is less expressive than it should be.

See the below example:

• Having an ILF, with 2 Record Entity Types and 50 Data Entity
Types (DETs) this is considered a ILF with average complexity
(10 FP)

• One DET is added to this ILF.

• We have the following FP and EFP count:

– New ILF: 2 RETs 51 DETs is an ILF with high complexity
(15 FP) increase in functional size is 5 FP

– Enhancement function point count:

– DETchanged = 4DET
≺DET In this case is 1

50

– The impact factor for ILF and EIF can be calculated using
the table as Ichanged

(1
50

)
= 0.25

– EFPchanged = 0.25 ∗ 15 = 3.75

This shows us the the increase in product size is 5 FP while the
increase in developed size is 3.75. This is true for up until 16

DET added. This is not a big difference, but it might occur a
couple of times and therefore show undervalued information
with regard to the rework done. The fact that the product size
could turn out to be more than the developed size should be
considered unwanted behavior of the method. This is inherent
when using NESMA for enhancements.

90

17
S U G G E S T I O N S T O S O LV E S H O RT C O M I N G S .

In this section some suggestions will be made to solve the shortcom-
ings that were found in the method or its application. It will be shown
that using some strict guidelines for using the method could help.

17.1 guidelines for usage

When making use of the proposed method, we have seen that, al-
though it is possible to do these measurements ,in a normal business
setting it might be ill-advised to do so. As it takes a lot of time to do
the measurements, this might not be worth the investment of using
it over expert judgment. This is not mutually exclusive. It is wise to
perform several estimation for a project, even though in practice there
is often not enough time or resources to do this.

If a company decides to use this method, the following guidelines
should be taken into account to make sure the count takes less time
and shows the most accurate information. It was explained that un-
fortunately these guidelines could not be taken into account while
doing the actual counting in the case study.

17.1.1 Role of the analyst

The measures should have good knowledge about what is going on in
the sprints, or what the project is about. That being said, it should not
be done by any analyst who will personally be held responsible for
the outcome of the count. In this respect this could be a requirements
engineer or a tester. These roles are less dependent of the produc-
tivity measures or the real outcome of the project, than an solution
/ software architect, project manager or developer. Furthermore the
analyst should be experienced, confident and interested or motivated
in doing FPA.

17.1.2 Time of measurement

The measurement should be done at the moment the project takes
place, after each sprint. For the last sprint, an estimation should be
done on any changes still to be done, to cover situations like the
ones in the case example where in the user acceptance test, quite
some extra work is done. This would give an estimate of what is
coming and make sure the project control can be done really well.
Unfortunately the context did not allow us to do so.

91

17.1.3 Validation of measurement

The measurements should be validated well by a second opinion or
through a final count of the delivered product. When differences oc-
cur in the interpretation of the results and the actual outcome of the
project this should be made clear. Due to unavailability of a old ver-
sion of the software (the software is an ongoing project even at the
time of writing), a validation could not be done. This could be done
if the time of the measurement is according to what was specified
above. This would enhance the quality of the measurements done and
hidden changes or things overlooked during the project can come to
surface which will have to be handled.

17.2 a different way of looking at enhancements

We could solve the issues with enhancements by changing the way
we look at them. As introduced before:

1. Deletion counts as 0.4*FP deleted

2. There is a formula to calculate changes, based on the impact
factor, which looks at the added, changed and deleted DET or
RTE or FTR.

3. Added functionality is 1 FP = 1 EFP

This is in fact a mix-up between two different concepts: Size and ef-
fort as discussed before. When we count 0.4*FP as a deletion we get
from deleting one functionality, this is based on effort (roughly that
amount of hours are counted as a deletion also creates changes that
have to be made in layout, other functions etc.) The same is true for
the changes. But in general FPA is and should provide us a measure-
ment to give us size. Even though effort should easily be derived
from that, it should not measure it by default or be influenced like
that. The same as that 100 meter of highway will take longer to build
than 100 meter of path. But that does not mean that we will measure
the path to be build as being only 10 meter. Looking at COSMIC we
see that the guidelines COSMIC [18] tells us the same. The context
itself should make the difference between what is the effort for these
three different operations. In this way you keep a distinction between
effort and size in the way that it should be done.

17.3 cosmic fpp as possible alternative :

The same shortcomings as noticed above are part of discussions on
the topic of FPA. COSMIC FPP was a method developed that mea-
sures functional size in a different way. The COSMIC method made
sure:

• It does not include the use of FPA tables, or any other workaround
for these aspects.

92

• Does not separate data with transactions as such, but instead
focuses on transactions (data movements) which count heavier
if they move more different data objects.|

• Does not have limitations with regard to sizing components.

• It handles changes in a stricter way considering size, as is dis-
cussed in 17.2.

Removing FPA tables, the difference between data functions and trans-
actional functions and the limitations with regard to the size of a
functions would change the NESMA method to such extent that it
might be better to just start over. Fortunately this was already done
for COSMIC. Therefore it is definitely worth considering the COSMIC
for Agile projects approach COSMIC [18]. To assess COSMIC FPP as
a worthy alternative cannot be established within the boundaries of
this research. It might be worth investigating in the future, as will be
pointed out in section 18.3, future research.

17.4 (semi)-automated measurements

The measurements done in this case were done using excel files with
formulas that were constructed before (NESMA EFPA template) as
well as during the counting (NESMA EFPA project count). As was
stated before, the time taken to do these measurements was quite
high, so the method might not be recommended as a viable business
case. However, if these measurements can be done easily by the use
of an automated program, this will be a more viable option.

There are software packaged developed for purpose that could be
adapted to the method proposed. Total Metrics provides the ’Scope’
and related products 1 being the most well known. Besides this there
is ’FP modeler’ tool 2 or Charismatek’s function point workbench 3.

These are programs that aid in the counting of function points and
should make it easier. Investigating their options is outside of the
scope of this research and will be further elaborated upon in the chap-
ter future research.

Besides this recently the OMG (Object Modeling Group), recently
released a document 4which gives pointers to automatic counting of
function points for software projects. This is full automated counting.
Giving the nature of NESMA FPA, this could pose more challenges
than are handled in this report but it might give indications on how
to reduce time investments in measurements. A solution in which the
main part of the count is done automatically, but dilemmas are posed
to the analyst, could perhaps be the optimal solution in this respect.

1 Source: http://www.totalmetrics.com where all available solutions can be found,
retrieved 5/5/2013

2 Source: http://www.functionpointmodeler.com/ for more information, retrieved
5/5/2013

3 Source:http://www.charismatek.com/_public4/html/fpw_overview.htm for more
information, retrieved 5/5/2013

4 To be found at:http://it-cisq.org/wp-content/uploads/2012/09/13-02-01-
Automated-Function-Points.pdf

93

http://www.totalmetrics.com
http://www.functionpointmodeler.com/
 http://www.charismatek.com/_public4/html/fpw_overview.htm
 http://it-cisq.org/wp-content/uploads/2012/09/13-02-01-Automated-Function-Points.pdf
 http://it-cisq.org/wp-content/uploads/2012/09/13-02-01-Automated-Function-Points.pdf

Even gamifaction structures might be used to create a solution that
not only is a lot faster than to do this automatically, it also gives
the analyst a lot more pleasure to do the counts than the current
approach.

94

18
C O N C L U S I O N

In the concluding chapter, a small overview is give of what was done
in this research, what can be concluded and what cannot be con-
cluded from the research done.

Secondly, a discussion will be started on the worth of the research
done, its validity and what could have been done differently. Finally
some suggestions will be given on further research that could be done
in this area to improve the size measurement and its usage in Agile
development.

18.1 conclusion

In this research it was shown that NESMA FPA could potentially be
used in agile environments, specifically with SCRUM. It depends on
the purpose and the time available by the organizations using this
method, if it is worth doing so. Using functional size as a baseline
in Agile projects will give some great advantages in terms of quanti-
fying functionality, estimations and scoping, but as a functional size
measurement method NESMA might be too cumbersome to provide
us with an efficient and convenient way of performing the analysis.
Granted, when using NESMA in the way proposed in this research,
handling high level requirements as well as changes, it has flaws in
the method itself that were pointed out and written down here. Func-
tion points are in no way a holy grail when it comes to estimations.
There is a lot more at play when translating user requirement to the
effort and finally the cost of the project. Estimates are a way to re-
duce and document uncertainty. Function points will probably never
provide the world with a way of doing extremely accurate estimates.
However, it will make sure that each deviation from the estimate will
have a clear explanation and a quantifiable measurement for it. It
might be a nice starting point to relate the other aspects of productiv-
ity.

Using the enhancement function points in a different way it was
shown that it is able to handle changes in the project during devel-
opment. It is also shown in the case project that able change man-
agement is just as important. NAFPA only handles changes at the
moment they are already implemented and the functionalities need
to be changed. Not if the changes are made before or during develop-
ment.

The opportunities here are to develop a company specific measure-
ments and estimation system using a functional size measurement
method that works with Agile. This research would give enough
starting points for this, as most of the angles of this problem are cov-
ered. Even when it does not give an absolute answer to the question
whether NESMA FPA should or should not be used in agile environ-

95

ments, it does show that if one would like to use it, how to do this. For
reasons not to use it, it comes up with suggestions for improvement.

Therefore we argue that if the loose ends could be solved, it might
provide software development companies with a helpful tool to mea-
sure their project in a uniform way. Looking into COSMIC might be
a good alternative as well. A lot of potential problems with NESMA
seem to be identified and solved by the COSMIC method. The lower
granularity of the COSMIC method however, makes sure that no con-
clusive advise can be given in this respect. Using that method might
take even longer to apply. As the method was tested on only one case,
the results obtain are not in any way conclusive.

This research does show the value of having a real baseline for soft-
ware project that is different from all the measurement that surround
the SCRUM method. The development of a good baseline in this re-
spect, still has to be developed and used well in a way that makes it
easy to measure and use.

18.2 discussion

The research done shows us the importance of having a good mea-
sure for the concept of ’size’ in software development. However it
also shows what is still lacking in the method and what is still a
challenge when you would have a measure like this. For estimation
purposes NESMA seems to be too cumbersome and outdated but as a
measure functional size does show some worth. There were shortcom-
ings in this research that one could take into account in interpreting
the research results. These will be discussed here.

First, the method constructed is not constructed by experts in the
field, so some hurdles might have been overseen or some concepts
could be used that are no longer relevant or are misunderstood to
some point. Nor were the counts done, so it might be that an expert
would have gotten a different result.

Second, As was discussed before, the nature of the project was not
totally Agile and some parts of the method could not be tested in that
respect. This is unfortunate, but given time restraints and lack of any
other project this was inevitable. To handle this no hard claims could
be made regarding some parts of the usage of this method, simply
some indications were given on the presumed working and efficiency
when it was not clear whether this would actually be the case if one
ought to apply in the actual world. What could still be done is to find
a real agile project were everything is done exactly according to the
SCRUM method. It is doubtful that this could be the case. As with
most methods available, a method is created given some assumptions
on reality. Whenever the method is applied in a certain context, some
alignment needs to be done to make sure the method fits. If not, some
parts of the method might not be done to full extent or done in the
wrong way. This is not different for SCRUM. The fact that the case
project was not following every SCRUM principle to full extent is

96

therefore a reality that will surface again even when it is tested on
another project.

Third, the requirements were not high level, but quite detailed. The
assumption that high level estimated could be handled well by the
method were therefore not tested. It is assumed that this is the case
and it is illustrated by an example in section 6.1, 6.2 and 6.3. Actually
testing it on a real project would have been a better way to validate
these assumptions. Therefore no hard conclusions can be drawn re-
garding the handling of high level or uncertain requirements and
especially the interplay between this and the handling of changes
through the EFP method.

Fourth, the counts were not performed during the project so it
could be that some functionalities were attributed to being developed
in the first sprint but they were actually only part of the delivered
functionality later in the process. Furthermore it is simply not enough
to test anything on only one project. Therefore the results of this re-
search should not be taken as conclusive findings. It would be enough
to answer “is it possible to use NAFPA in Agile environments” is an-
swered, because we managed to do it. Whether it is good idea is left
open to the companies that would like to use it.

18.3 future research

In this section, some pointers will be given towards future research
that could improve this method. This could be done either by satis-
fying the same criteria we are trying to reach, optimization of the
estimation and measurement process or tracking of the software de-
velopment management process. This list is far from complete. In a
critical area like estimation and scoping for software projects, there
is always room for improvement. The list of possible areas to inves-
tigate is therefore almost endless. However, some aspects in this re-
search were left open due to scope or time constraints. These will be
discussed here. The loose ends were first presented in section 16.2
where the flaws of the method are presented. Some indications of so-
lutions were given in section 17. These could be solved in any future
research, especially with regard to the flaws in NESMA EFPA itself.

Investigating untested loose ends

Some other ideas were presented in this research which were not
tested on their usefulness or applicability and therefore did not make
it as flaws. The most important one is the sizing of different level of
high level requirements in SCRUM projects. Especially the working of
this combination of three different levels of sizing. Even more so the
combination of this with the usage of enhancement function points as
presented here. This will have to be tested on a project that has this
kind of different level of requirements at the same. Preferably after
some of the flaws presented earlier are already solved.

97

COSMIC as more suitable alternative

Using COSMIC Full Function Points as functional size measurement
in Agile projects instead of NESMA could yield better results and
prove to be more useful. This reasons for this were pointed out in sec-
tion 17.3. This means that this research could be done on using the
COSMIC functional size to achieve the same result. Rule [26]already
pointed out this method. In his approach he takes more rigorous steps
and denounces story points altogether. This is not necessary. The
most important question is whether the COSMIC counting would
be considered a lesser burden and less effort on the team than the
NESMA method, next so solving the weaknesses pointed out before.
From a first look the method seems easier in its usage, even though
it has a finer granularity.

Improving estimations

As was pointed out before, when estimating hours, there are more
variables at play than simply the functional size. For one the change
percentage was discussed, which is not taken into the estimation, but
came out during the project. The productivity, team coherence, qual-
ity of requirements are all important to the effort in time requested of
the team. Therefore it is ill-advised to merely use functional size as
the input to get the number of hours that should be billed as output.
Research could be done in identifying and quantifying more factors
that will help in estimate the effort in time. This could be combined
in a simple factor that will translate the size to effort, which could
help in the estimation process.

Using the method as Agile Maturity measuring tool

What we have seen in the research is that the number of hours per
function point vastly increased over the sprints. This shows that a lot
of work has been done to functionality delivered on previous sprints.
While at the same time being a counter intuitive indicator for the pro-
ductivity, it does show something useful. It shows that the team was
not working in SCRUM as they should. Working in SCRUM means
to deliver working software in iterations. In this case the software was
delivered, but was not working correctly. This means that when the
functional productivity goes down to such extent during the sprints,
while the velocity should increase, it means there is reason to believe
that the team is not working Agile or based on quality enough and
that therefore the ’Agile Maturity’ is low. Research in Agile Maturity
is growing as a similar way of grading companies like CMMI, this
could help put a quantified measure that shows that an Agile team
delivers a vast amount of functionality each sprint.

98

Improving efficiency of measuring

As was discussed in 17.4 automated measurements or half-automated
measurements using gamification might be the solution to decrease
the time spend on counting the functional size. Further research on
that area could improve the biggest burden the method has in present
time. First and foremost and inventarisation could be made on the
software currently available. If a team member of the project could
spend half an hour resolving issues while counting, the main reason
not to use this method does not exist anymore. Therefore further re-
search in this area should be done to see how a functional size could
be an important part of software development without it being a bur-
den to any member of the team.

99

A C A D E M I C B I B L I O G R A P H Y

[1] Sharareh Afsharian, Marco Giacomobono, and Paola Inverardi.
A framework for software project estimation based on cosmic,
dsm and rework characterization. In Proceedings of the 1st in-
ternational workshop on Business impact of process improvements,
BiPi ’08, pages 15–24, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-032-6. doi: 10.1145/1370837.1370842. URL http:

//doi.acm.org/10.1145/1370837.1370842.

[2] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland,
Ray Madachy, and Richard Selby. Cost models for future
software life cycle processes: COCOMO 2.0. Annals of Soft-
ware Engineering, 1(1):57–94, December 1995. ISSN 1022-7091.
doi: 10.1007/BF02249046. URL http://www.springerlink.com/

content/y2386315010g7113/.

[3] Barry W. Boehm. Software Engineering Economics. IEEE
Transactions on Software Engineering, SE-10(1):4–21, January
1984. ISSN 0098-5589. doi: 10.1109/TSE.1984.5010193.
URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?

arnumber=5010193.

[4] R.S. Brwer, J.A. Dane, C.A. Moore, and P.M. Johnson. Empirically
guided software effort guesstimation. IEEE Software, 17(6):51–
56, 2000. ISSN 07407459. doi: 10.1109/52.895168. URL http://

ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=895168.

[5] L Buglione, J J Cuadrado-Gallego, and J A G De Mesa. Project
Sizing and Estimating: A Case Study Using PSU, IFPUG and
COSMIC. Proceedings of the International Conferences on Software
Process and Product Measurement, 5338:1–16, 2008. ISSN 03029743.
doi: 10.1007/978-3-540-89403-2. URL http://www.springerlink.

com/index/f75171211218l182.pdf.

[6] Lawrence Chung and Julio Cesar Prado Leite. Conceptual Model-
ing: Foundations and Applications, volume 5600 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, Berlin, Hei-
delberg, July 2009. ISBN 978-3-642-02462-7. doi: 10.1007/
978-3-642-02463-4. URL http://dl.acm.org/citation.cfm?id=

1577331.1577356.

[7] Mike Cohn. Techniques for Estimating. In Agile estimating and
Planning, pages 49–60. Prentice Hall, 1 edition, 2005. ISBN 978-
0131479418.

[8] Jean-marc Desharnais, Alain Abran, and Bugra Kocaturk. Using
the COSMIC Method to Evaluate the Quality of the Documen-
tation of Agile User Stories. In 2011 Joint Conf of 21st Int’l Work-
shop on Software Measurement and the 6th Int’l Conference on Soft-

100

http://doi.acm.org/10.1145/1370837.1370842
http://doi.acm.org/10.1145/1370837.1370842
http://www.springerlink.com/content/y2386315010g7113/
http://www.springerlink.com/content/y2386315010g7113/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5010193
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5010193
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=895168
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=895168
http://www.springerlink.com/index/f75171211218l182.pdf
http://www.springerlink.com/index/f75171211218l182.pdf
http://dl.acm.org/citation.cfm?id=1577331.1577356
http://dl.acm.org/citation.cfm?id=1577331.1577356

ware Process and Product Measurement, IWSM/Mensura 2011, Nara,
Japan, November 3-4, 2011, pages 269–272, 2011. URL http://doi.

ieeecomputersociety.org/10.1109/IWSM-MENSURA.2011.45.

[9] Cigdem Gencel and Onur Demirors. Functional size measure-
ment revisited. ACM Trans. Softw. Eng. Methodol., 17(3):15:1—-
15:36, June 2008. ISSN 1049-331X. doi: 10.1145/1363102.1363106.
URL http://doi.acm.org/10.1145/1363102.1363106.

[10] Cigdem Gencel and Charles Symons. From performance
measurement to project estimating using COSMIC func-
tional sizing. In Software Measurement European Forum, num-
ber 1, 2009. URL http://scholar.google.com/scholar?hl=

en&btnG=Search&q=intitle:From+performance+measurement+

to+project+estimating+using+COSMIC+functional+sizing#0.

[11] Mohamad Kassab, Olga Ormandjieva, Maya Daneva, and
Alain Abran. Non-Functional Requirements Size Measurement
Method (NFSM) with COSMIC-FFP. Software Process and Product
Measurement, 4895:168–182, 2008. URL http://dx.doi.org/10.

1007/978-3-540-85553-8_14.

[12] Roger S Pressman. Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill Higher Education, 6th edition, 2005. ISBN
0072496681.

[13] Jeff Sutherland, Anton Viktorov, Jack Blount, and Nikolai
Puntikov. Distributed Scrum: Agile Project Management
with Outsourced Development Teams. 2007 40th Annual
Hawaii International Conference on System Sciences HICSS07,
0:274a–274a, 2007. ISSN 15301605. doi: 10.1109/HICSS.
2007.180. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=4076936.

101

http://doi.ieeecomputersociety.org/10.1109/IWSM-MENSURA.2011.45
http://doi.ieeecomputersociety.org/10.1109/IWSM-MENSURA.2011.45
http://doi.acm.org/10.1145/1363102.1363106
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:From+performance+measurement+to+project+estimating+using+COSMIC+functional+sizing#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:From+performance+measurement+to+project+estimating+using+COSMIC+functional+sizing#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:From+performance+measurement+to+project+estimating+using+COSMIC+functional+sizing#0
http://dx.doi.org/10.1007/978-3-540-85553-8_14
http://dx.doi.org/10.1007/978-3-540-85553-8_14
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4076936
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4076936

P R O F E S S I O N A L B I B L I O G R A P H Y

[14] A J Albrecht. Measuring Application Development Pro-
ductivity. In I B M Press, editor, Proceedings of the Joint
SHAREGUIDEIBM Application Development Symposium, vol-
ume 83, pages 83–92. IBM, IBM Cooperation, 1979. URL http://

scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:

Measuring+Application+Development+Productivity#0.

[15] CHARISMATEK. Function Point Analysis and Software Pack-
age Implementation Projects. URL http://www.charismatek.

com.au/_public4/pdf/FPAPackages.pdf.

[16] Atul Chaturvedi, Ram Prasad Vadde, Rajeev Ranjan, and Mani
Munikrishnan. Estimating the Size of Software Package Imple-
mentations using Package Points. 2011.

[17] COSMIC. COSMIC Method Version 3.0.1, Measurement Manual.

[18] COSMIC. Guideline for the use of COSMIC FSM to manage Agile
projects. Number September. Public Domain, 3.0.1 edition, 2011.
URL www.cosmicon.com.

[19] Martin Fowler and Jim Highsmith. The Agile Manifesto.
Software Development, 9(August):28–35, 2001. ISSN 10708588.
URL http://andrey.hristov.com/fht-stuttgart/The_Agile_

Manifesto_SDMagazine.pdf.

[20] H S Van Heeringen. Changing from FPA to COSMIC A tran-
sition framework. Software Measurement European Forum 2007,
2007.

[21] Roberto Meli. Functional Metrics: Problems and Possible So-
lutions., 1998. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.33.8456.

[22] E A Nelson. Management Handbook for the Estimation of Com-
puter Programming Costs. System Development Corp, 1966.

[23] NESMA. The application of function point analysis in the early
phases of the application life cycle, .

[24] NESMA. FUNCTION POINT ANALYSIS FOR SOFTWARE EN-
HANCEMENT Professional guide of the Netherlands Software
Metrics Users Association, .

[25] Jolijn Onvlee and Rini van Solingen. Scrum en fuctiepunten:
vrienden of vijanden? Automatiserings Gids, March 2012.

[26] Grant P G Rule. Sizing User Stories with the COSMIC FSM
Method. 2010.

102

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Measuring+Application+Development+Productivity#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Measuring+Application+Development+Productivity#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Measuring+Application+Development+Productivity#0
http://www.charismatek.com.au/_public4/pdf/FPAPackages.pdf
http://www.charismatek.com.au/_public4/pdf/FPAPackages.pdf
www.cosmicon.com
http://andrey.hristov.com/fht-stuttgart/The_Agile_Manifesto_SDMagazine.pdf
http://andrey.hristov.com/fht-stuttgart/The_Agile_Manifesto_SDMagazine.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.8456
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.8456

[27] Jeff Sutherland. The Scrum Guide. Framework, 2(July):17, 2011.
URL http://www.scrum.org/scrumguides/.

[28] Jeff Sutherland, Guido Schoonheim, Eelco Rustenburg, and
Maurits Rijk. Fully Distributed Scrum: The Secret Sauce
for Hyperproductive Offshored Development Teams. Agile
2008 Conference, pages 339–344, 2008. doi: 10.1109/Agile.2008.
92. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4599502.

103

http://www.scrum.org/scrumguides/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599502
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599502

	Abstract
	Acknowledgments
	Contents
	Introduction
	1 Introduction
	1.1 Introduction: recap of the research project
	1.2 Motivation
	1.3 Research question

	2 Background
	2.1 Function Point Analysis
	2.2 Estimation
	2.3 The cone of uncertainty
	2.4 Software Sizing
	2.5 Expert judgment
	2.6 SCRUM poker / story points

	3 Research Method
	3.1 Part 1: introducing a method for NESMA in Agile environments
	3.2 Part 2: Applying the method in an Agile environment
	3.3 Case study

	Developing NESMA Agile FPA
	4 Difficulties when estimating agile and modern Software development projects
	4.1 Difficulties specific to Agile Development
	4.2 Non-functional requirements
	4.3 Modern solutions

	5 Expert judgment and Scrum
	5.1 Estimations
	5.2 Accounting for change
	5.3 Non-functional requirements
	5.4 Modern solutions

	6 using FPA combined with Scrum
	6.1 The beginning of a project: requirements before the start.
	6.2 Start of a Sprint: Sizing user stories
	6.3 Start of a sprint: Sorting user stories.
	6.4 During sprint: Changing requirements

	7 FPA and Non-functional requirements
	7.1 NFR framework
	7.2 COSMIC NFSM
	7.3 Using the same principle for NESMA

	8 Modern day Solutions
	8.1 Application integration
	8.2 Business intelligence
	8.3 Web Portal package implementation / Mobile development

	9 Part 1: Recap

	Applying NESMA Agile FPA
	10 Project and approach
	10.1 Case project
	10.2 Approach

	11 Estimations at start of project
	11.1 Pre-sales
	11.2 Planning

	12 Sizing during project
	12.1 Sprint 1
	12.2 Sprint 2
	12.3 Sprint 3
	12.4 User Acceptance Test (Sprint 4)

	13 Project end
	13.1 Analysis using NESMA FPA

	14 Recap

	Validating NESMA Agile FPA
	15 Interpreting the results
	15.1 Accuracy of estimations
	15.2 Effort of estimations

	16 Answer to the main research question
	16.1 Suitability of NAFPA in Scrum.
	16.2 Shortcoming of NESMA FPA for the use in agile environments

	17 Suggestions to solve shortcomings.
	17.1 Guidelines for usage
	17.2 A different way of looking at enhancements
	17.3 COSMIC FPP as possible alternative:
	17.4 (Semi)-automated measurements

	18 Conclusion
	18.1 Conclusion
	18.2 Discussion
	18.3 future research

