

Outsourcing testing activities – How to prove cost reductions?

H.S. van Heeringen

Abstract
 Outsourcing (parts) of the ICT organization is for many organizations a hot item these
days. In some cases the entire ICT department is outsourced to a domestic or to a foreign ICT
supplier, but most organizations outsource only part of their ICT operations. In many cases
this part is either the development part or the enhancement part, but nowadays also a trend
can be watched with regard to the outsourcing of all system testing activities. One of the most
common drivers in outsourcing is the possibility to realize cost reductions. When outsourcing
development activities, these cost reductions are measurable. It is possible to calculate the
costs per function point for the development activities in-house and also the price per
function point of the outsourcing partner(s) and the difference indicates the amount of cost
reductions that can be realized.

 When outsourcing test activities, this model will not suffice. Although it is possible to
calculate the price per function point for test projects, there is one more important variable.
This is the test performance delivered: how many defects have been found compared to the
defects that should have been found. While the price per function point for test projects may
be lower when outsourcing test activities, it still may be possible that there will be no cost
efficiencies. This is due to a larger number of defects than necessary residing in the software
and the work that is needed to correct these defects as they occur in acceptance test and in
production phase. Moreover, the number of defects that is expected to be found in the testing
phase is highly dependent on the way that the development of the project has been carried
out. If this was a project with a relatively short duration and with a relatively large team size,
the number of defects expected is relatively high. It is therefore not possible to evaluate the
testing performance objectively without taking into account the way the project has been
carried out.

 In this paper a model will be presented that will help organizations to assess the real cost
efficiencies that they can gain when outsourcing testing activities. The model benchmarks the
real project data against the expected project data based on the results from one of the most
widely used project estimation tools: QSM SLIM Estimate [1]. Both the amount of hours
spent while testing and the number of defects found will be taken into account. In the paper, a
sample project will be followed in order to see how the model works.

1. Introduction
 It’s getting more and more important to be able to calculate the performance of IT
development projects and its costs in an accurate way. In this era of outsourcing and off
shoring, it is important for the client organization to know the performance of its IT
development to be able to assess whether outsourcing their IT organization (or part of it) is
really going to save them money. The supplier side has to know its performance to be able to
make a good price quotation to win the contract and also to be able to be profitable.

 Nowadays, Sogeti Nederland B.V. [2] (Sogeti) experience shows that more and more large
companies are outsourcing parts of their IT development activities. In some cases only
development or only testing activities are outsourced, but there are also cases in which both
development activities and testing activities are outsourced… and these are often outsourced
to two different suppliers. This trend has resulted in an increasing number of test lines in the
various Sogeti offices in the Netherlands, where each test line performs the testing activities
for a specific client.

 Most organizations that are mature enough to use software metrics in their IT development
processes are able to state their Project Delivery Rate (PDR), for instance in a certain number
of hours per function point needed to realize a piece of software in a specific domain. Usually
this PDR is the average or the median value of a number of relevant past projects in their
experience database. This PDR can be split into a PDR for the major stages in the project
lifecycle, such as for instance design, build, test and implementation. These organizations are
usually capable of stating their test performance as a certain PDR in hours per function point
and they are also able to benchmark this PDR against for instance the ISBSG database [3].
But is it enough to calculate the PDR of a specific test project and benchmark this against the
average or median value of this PDR? Is the number of hours spent on testing a project with a
specific functional size really a good indicator of the test performance?

 In this paper the model will be presented that is developed and is used by Sogeti to assess
the test performance of a project. Because Sogeti uses the QSM SLIM toolsuite in its
estimating and performance analysis processes, the model benchmarks the real project data
against the expected project data based on the results from one of the most widely used
project estimation tools: QSM SLIM Estimate. Before explaining the model, lets first see
which are the factors that according to Sogeti are the most important ones in assessing test
performance.

2. Factors that influence test performance
 When investigating the ways in which the test performance can be assessed, there are a lot
of factors that influence test performance delivered by a supplier. In our opinion, the three
most important factors are:

2.1. The number of defects found
 When performing a test, it is important to find as many defects as possible. However, it is
not possible to measure test performance only by the number of defects found. When many
defects are found, this may indicate that test performance was very good. However, when a
lot of defects are found in the first few months after the system has been released into
production, this may indicates that test performance was maybe not that good after all. On the
other hand, when only few defects are found in the test, this may indicate that test
performance was very poor, but this also may not be true. It could be that there are no more
defects and all defects have been found. This means that a good assessment of test
performance relies on the performance of the development team and also on the number of
defects that reside in the software after the testing phase.

2.2. The number of hours spent
 Next to the number of defects found, test performance is also influenced by the number of
hours spent on testing activities. How efficient and how productive has the test been carried
out? The efficiency is not only the result of the knowledge and skills of the people that are

carrying out the test, but also by the number of defects that are present in the software. Each
defect has to be logged, reported, retested and reported again and so leads to extra work.

2.3. The time interval that is available
 In most software projects there is a fixed date on which the system has to be implemented
in the production environment. A project can roughly be divided into two phases:
development phase (including design) and testing phase. It is a well-known fact that
development phases of projects tend to last longer than planned. Usually this means that the
testing phase has to be carried out in a shorter time period than planned, in order to be able to
still manage to deliver the system on the desired date. So, possibly the test team has done all
that it could in the reduced testing phase is quite high, but a lot of defects are still found after
the testing phase. This means that it is possible to reach a good test performance, even though
a lot of defects are found after completing the testing phase.

2.4. Relation between the factors
 The question is now: What is the relation between these factors. If the time period
available for a testing phase is longer, how many extra defects have to be found? How many
extra hours are needed when the testing phase has a shorter time interval. These are complex
questions to answer. We are using the QSM SLIM Estimate tool to help us answer these
questions.

3. Setting the benchmark norm
 Sogeti uses SLIM Estimate to estimate software development projects. After entering a
number of parameters, like for instance the functional size, a detailed solution is generated
based on experience data in the metrics database. This solution shows among others the
number of hours that is most likely to be spent in the different phases, an optimal duration of
the project and the maximum team size that is working on the project. But it also predicts the
quality of the software delivered. Not only the number of defects expected, but also the
expected mean time to defect (MTTD) is generated by the tool. If there is organizational
experience data about defects available in the particular organization, the prediction can be
made upon this data. In table 3.1 an example of a work breakdown structure is shown with
the estimation of the number of hours for systems testing.

Table 3.1: Predictions of system testing hours

Task

Start Date

End Date

Duration
(Months)

Hours

 Average
number of

fte
Fase 2: Requirements & Design 1-1-2008 16-6-2008 5,53 2696 2,8
 2.1 Functional Design 1-1-2008 16-6-2008 5,53 2292 2,4
 2.2 Contract and Project mgm. 1-1-2008 16-6-2008 5,53 404 0,4
Fase 3: Build and test 11-4-2008 6-12-2008 7,86 8551 6,3
 3.1 Contract- and Projectmgm 11-4-2008 6-12-2008 7,86 1129 0,8
 3.2 Project preparation 11-4-2008 23-4-2008 0,43 103 1,4
 3.3 Technical Design 16-4-2008 17-5-2008 1,05 573 3,2
 3.4 Development 23-4-2008 24-10-2008 6,04 5045 4,8
 3.5 Systems test 1-9-2008 24-10-2008 1,77 1248 4,1
 3.6 Support Acceptance test 24-10-2008 6-12-2008 1,45 453 1,8

 The quality of the software delivered relies heavily on the way the project is carried out.
Especially the duration and the maximum team size are important factors that influence the

quality of software. When there is a lot of time pressure (short duration), the quality of the
code delivered is the lowest. An example of a prediction is shown in the next table.

Table 3.2: Predictions of software quality
Duration
Development
and test
 (months)

Max.
development
and test team
size (# FTE)

Hours needed
for Test phase

Defects in
systems test

Defects in
acceptance test

Defects first
month of
production

13,6 6 4.154 68 37 8
12,8 8 5.232 75 42 12
12,2 10 6.258 85 50 18
11,8 12 7.244 98 60 26

 When the size of the software and the productivity of the team are constant, duration is the
most important factor that influences software quality. A relatively short duration means that
the project has to be carried out by a relatively large team. The effect that then takes place can
be seen in the table above. Software quality is deteriorating, even though more testing hours
are spent. Most organizations are not aware of this fact. Usually they understand that if a
system has to be build in a short time period, this means it will get more expensive. They
usually don’t recognize the fact that software quality will be lower and that will lead to more
maintenance costs after the project has been released into production phase.

 SLIM Estimate provides the possibility to simulate the project after completion, in a way
that it’s possible to estimate the number of defects and the number of testing hours based on
the actual hours spent and the actual duration of the project. The estimate shows for instance
the amount of hours that should have been spent in the testing phase, the number of defects
that should have been found in systems testing and the number of defects that should have
been found in acceptance testing. The number of defects found and the time frame in which
they are found are translated by the tool into a specific Defect Tuning Factor. This estimation,
based on the actual project data, is in the proposed model the baseline against which the test
performance can be benchmarked.

Figure 3.1: Defects that are residing in the software per month and per milestone (vertical
dotted lines). Milestone 4 is the end of the development phase, milestone 5 is the end of the

systems test and milestone 6 is the end of the acceptance test.

4. Test performance
 After setting the benchmark, based on your own experience data and the project actual data
of the project completed, the following data is present:

- the number of hours that was expected
- the number of hours actually spent
- the number of defects found expected
- the number of defects actually found
- the number of defects expected to be found after completing systems testing
- the number of defects actually found after completing systems testing

 With this information it is possible to assess in a number of cases whether systems testing
was better or worse than expected. Table 4.1 shows the different scenario’s.

Table 4.1: Test performance assessment
 Less defects found

than expected
Defects found equal
to expectation

More defects found
than expected

Less hours spent than
expected

? + ++
Hours spent equal to
expectation

- ± +
More hours spent than
expected

-- - ?

 Whether the question marks become a plus or a minus depends on the view of the client.
When cost savings are more important than defects found, the question mark in the upper left
corner could become a plus as well. When finding defects is more important than hours spent,
the question mark in the lower right corner will become a plus.

 So, it is possible to assess the systems test performed. But how can we use this insight to
calculate the cost reductions that we have delivered in a contract. First we have to find out
what the test performance is of the client before the outsourcing deal. This is step 1 in the
model.

5. Model step 1: Setting the baseline of the client
 In this paper we are looking at a fictional contract that Sogeti and a major client (client X)
have agreed upon. The contract states in short that the client outsources all systems testing
activities to Sogeti and Sogeti committed to realize cost reductions of 10 percent in the first
year and another 10 percent in the second year. The client had outsourced the development
activities already to another ICT supplier and the client is in charge of acceptance testing and
implementation activities themselves

Sogeti uses the following model when insourcing testing activities of a specific client.

Figure 5.1: Sogeti Outsouring model for test services

 To be able to make cost reductions visible, first the performance of the client before
outsourcing has to be assessed in an objective way. To do this, a baseline analysis has been
carried out for client X. This has taken part in Phase 2 of the model described.

For client X the following approach has been used:

1. A sample of 5 recent projects has been identified to include in the baseline
2. These projects were sized using the COSMIC method [4]
3. The actual performance of the projects has been administrated in SLIM Estimate
4. The results are written in a baseline report
5. Client X had to agree on this baseline report and, by doing this, committed to calculate

cost reductions based on this baseline

The baseline report shows the analysis of the different projects. The most important results of
this baseline are:
- Detailed analysis per project
- SLIM Estimate template Work Breakdown Structure
- Average PI (productivity index) of the clients projects
- Defect tuning factor of the clients projects
- Costs per testing hour

 Because of the fact that we have to prove cost reductions, it is important to define costs per
testing hour in an objective way. With the client was agreed to use the clients internal
administrative hour rate for testing activities in order to be able to put a price tag on a testing
hour. The choice on which method to use for measuring the size of the software should be
made together with the client. Possibilities are the functional size measurement methods
COSMIC, IFPUG [5] or NESMA [6] FPA or effective source lines of code. The latter is the
most easy to collect and is also the best usable in SLIM Estimate.

For client X, the baseline report showed among others the following data

Table 5.1: Baseline data Client X

Project Size in CFP Hours spent in
Test phase

Defects found in
systems test

Defects in acceptance test + 1st
month Production

A 310 554 12 8
B 512 937 27 5
C 212 508 22 12
D 224 732 52 18
E 487 878 35 8

The cost per test hour was set to 80 euro.

6. Model step 2: Operational execution
 The baseline report shows the exact costs and performance of the clients testing situation
before outsourcing. After the transition phase, the performance of Sogeti has to be measured.
Because of efficiency reasons, the client and Sogeti agreed not to measure every single
project, but in advance a number of projects were selected to measure and it was agreed that
these projects would be used to demonstrate the cost reductions for the client.

For every project that is to be measured, the following four steps have to be carried out:

6.1. Step 1
 The size of the product to be developed has to be measured using the agreed method. In the
case of client X the COSMIC method was used.

6.2. Step 2
 The project is estimated with SLIM Estimate and a calculation is made using the
parameters of the client in the baseline together with the actual duration of the project. The
number of testing hours that the client would have spent is expected, together with the
number of defects that the client would have found in the duration actually realized. The
clients Work Breakdown Structure and the clients’ defect tuning factor are used to be able to
make a realistic prediction of the project in the case the client had not outsourced its testing
activities. The results are shown in table 6.1

Table 6.1: Project Q estimate based on baseline data
Scenario Test

hours
TU

Defects
S-test
FS

Defects A-test
+ production
FAP

Defects total
FT (=FS+FAP)

Ratio
FS/FT

Hour
rate R

Costs C
(TU*R)

Client baseline 2.045 30 31 61 0,49 80 163.600

This can only be done 1 month after the system has been released into production, as the
number of defects in the first month is a variable here.

6.3. Step 3
 The actual project data is put in the table, which results in table 5.2
.

Table 6.2: Project Q baseline and actual data
Scenario Test

hours
TU

Defects
S-test
FS

Defects A-test
+ production
FAP

Defects total
FT (=FS+FAP)

Ratio
FS/FT

Hour
rate R

Costs C
(TU*R)

Client baseline 2.045 30 31 61 0,49 80 163.600
Sogeti actuals 1.800 35 30 65 0,53 82 147.600

 In this project, less hours are spent compared to the baseline and relatively more defects are
found compared to the defects found after the systems test. Test performance delivered by
Sogeti in this project can therefore be assessed as well.

6.4. Step 4
 After step 3, we have to assess whether the test performance of the measured projects is
really resulting into the cost reductions promised in the contract. To do so, two important
metrics are calculated: Outsourcing effectiveness and Outsourcing efficiency.

Outsourcing effectiveness (OV) is a metric that indicates whether relatively more defects are
found than the client would have, or not. The ratio between the defects found in systems test
(FS) and the total number of defects found after the code was released for the systems test
(FT) is calculated for both the baseline scenario as the actual scenario. The Outsourcing
effectiveness is the relative difference between the ratio FS/FT in the baseline scenario and
the one in the actual scenario.

In project Q, Sogeti has realized an OV of (0.53-0.49)/0.49 ≈ 8,2 %

Outsourcing efficiency (OF) is calculated by the relative difference in the number of testing
hours times the hour rate.

In project Q, Sogeti has realized an OF of (163.600–147.600) / 147.600 ≈ 9,7%

In this model, these two metrics together are the basis for the metric Cost Reduction (CR) for
the systems testing phase.

Cost reduction has a relation with Outsourcing effectiveness and with outsourcing efficiency.
This relation is made visible in figure 6.1

Outsourcing effectiveness (OV):

Actual (FS / FT) - Baseline (FS / FT)
 * 100%
 Baseline (FS / FT)

Outsourcing efficiency (OF):

Baseline C – Actual C

 * 100%
 Baseline C

Figure 6.1: Cost Reduction expressed in terms of Outsourcing Effectiveness and Outsourcing

Efficiency

 In the top right of figure 6.1 the cost reduction is clear. Relatively more defects have been
found compared to the baseline and relatively less hours have been spent. In the bottom left
it’s clear that the performance was quite bad.

 In this model, the assumption has been made that the relation between outsourcing
efficiency and outsourcing effectiveness is 1 to 1. This means that for a client both metrics are
equally important. If this is not the case, this has to be agreed upon in the contract negotiation
phase between the two parties. If outsourcing efficiency is more important, the diagonal
should shift by putting weight factors to the metrics.

This leads to the following formula for Cost Reduction:

Outsourcing
effectiveness

Outsourcing
efficiency

- 100 % 100 % 0 %

100 %

- 100 %

 0 %

No Cost
Reduction
Kosten

Cost Reduction

Cost Reduction

CR = (w1 * OV) + (w2 * OF) / w1+w2

CR = Cost Reduction
OV = Outsourcing Effectiveness
OF = Outsourcing Efficiency
w1 = weight factor OV
w2 = weight factor OF

in table 5.3, a number of scenario’s have been displayed in order to make this visible. A
negative CR means that the costs of outsourcing are not reduced at all, but are even higher
than before outsourcing.

Table 6.3: A number of scenario’s and the calculated Cost reduction
Scenario OV w1 OF w2 Cost Reduction
1 25 % 1 - 30% 1 (25% + -30%) /2 = - 2,5%
2 25 % 2 30% 1 ((2*25%) + 30%) /3 = 26,67 %
3 - 25 % 1 - 30% 2 (-25 % + (2*- 30%)) /3 = -28,33 %
4 - 25 % 4 30% 7 ((4*-25%) + (7* 30%)) / 11 = 10 %

 When applying this model, it is possible to assess cost reductions per project. After all the
projects that were identified as the projects to be measured actually have been measured this
way, step three of the model can be performed.

7. Model step 3: Evaluation
 After the contract period has ended we can see if the percentage of cost reductions, that
were agreed upon in the contract, have been realized or not. This can be done by filling in
table 7.1 with the data gathered. For client X the following projects were measured.

Table 7.1: Cost reduction in the contract
Project
name

Outsourcing
effectiveness

Outsourcing
eff iciency

Test Costs
baseline CR CR in EUR

Q 9,7% 8,2% € 163.600 8,95% € 14.642
R 12,3% 6,1% € 312.150 9,2% € 28.718
S 8,2% 3,0% € 122.650 5,6% € 6.868
T 6,4% 13,3% € 718.120 9,85% € 70.735
U 15,6% 8,8% € 67.050 12,2% € 8.180
TOTAL € 1.383.570 € 129.143

 The overall cost reductions in this contract were 129.143 / 1.383.570 ≈ 9,3%. While
substantial cost reductions have been demonstrated, it was not enough to fulfill the promises
in the contract, which was 10 percent in the first year.

8. Conclusions & Discussion
 Many organizations are nowadays involved in outsourcing parts of their ICT department.
When outsourcing testing activities, these organizations usually want the ICT supplier to
agree on specific percentages of cost reductions. To agree on these percentages is usually not
a problem, but proving afterwards that the goals are actually reached usually ís a big problem.
In this paper the model is described that Sogeti uses to prove cost reductions for clients that
outsource their testing activities to Sogeti. Before the outsourcing is effectuated, a baseline
analysis is made in which the test performance of the client is established. During the contract
period a number (or all) of the projects are measured and the test performance of the supplier
is measured. The formula’s for outsourcing efficiency, outsourcing effectiveness and cost
reductions can then be calculated and in the end the percentage and amount of cost reductions
for the client can be calculated. This model helps both the client and the supplier to assess
cost reductions in outsourcing test activities and the first experiences with the model are very
positive.

However, new experiences with the model may lead to desires to deepen it. Examples could
be:
- Putting thresholds to Outsourcing efficiency and/or effectiveness. E.g. client may not

accept an outsourcing effectiveness lower than 5%.
- Specify defects to category and put weight factors to the categories.

References
[1] QSM Software Software Lifecycle Management toolsuite, http://www.qsm.com.
[2] Sogeti Nederland B.V., http://www.sogeti.nl; http://metrieken.sogeti.nl.
[3] ISBSG database, version 10, www.isbsg.org.
[4] ISO/IEC19761:2003, Software Engineering -- COSMIC -- A Functional Size

Measurement Method, International Organization for Standardization - ISO, Geneva, 2003.
[5] IFPUG, “Function Point Counting Practices Manual, version 4.2, International Function Point

Users Group, 2004, http://www.ifpug.org.
[6] NESMA, “Definitions and counting guidelines for the application of function point analysis A

practical manual, version 2.2”, Netherlands Software Measurement user Association, 2004 (in
Dutch), http://www.nesma.org.

