
 1

A PROPOSED SUITE OF THIRTEEN FUNCTIONAL METRICS

FOR ECONOMIC ANALYSIS

Capers Jones, VP and CTO, Namcook Analytics LLC

Version 7.0 September 16, 2015

Abstract

Function point metrics are the most accurate and effective metrics yet developed for

performing software economic studies, quality studies, and value analysis. The success of

function point metrics for software applications leads to the conclusion that the logic of

function point metrics should be applied to a linked suite of similar metrics that can size

other business and technical topics.

This article suggests that an integrated suite of functional metrics be created that would

encompass not only software via function points but also data points, risk points, value

points, service points, web-site points, security points, hardware function points, and

software usage points.

The reason for this suggestion is to enable large-scale economic analysis of complex

systems that involve software, data, hardware, web sites, and other business topics that

need concurrent sizing, planning, estimating, and economic analysis.

COPYRIGHT © 2011-2015 BY CAPERS JONES.

ALL RIGHTS RESERVED.

 2

ECONOMIC ANALYSIS USING A SUITE OF FUNCTIONAL METRICS

INTRODUCTION

From their first publication in 1978 function point metrics have proven their value for

software application sizing, cost estimation, quality predictions, benchmarks, and overall

economic studies.

The International Function Point Users Group (IFPUG) has become the largest software

measurement association in the world. There are also other function point variants that

are growing rapidly too, including COSMIC function points, NESMA function points,

FISMA function points, and a number of others.

Yet software does not exist in a vacuum. There are many related business topics which

lack effective size metrics. One critical example is that of the data used by software

applications.

Most large companies own more data than they do software. The costs of acquiring data

and maintaining it are at least as high as software development and maintenance costs.

Data migration from legacy applications to new applications can take more than three

calendar years. Data quality is suspected to be worse than software quality, but no one

really knows because there is no effective size metric for quantifying data-base volumes

or measuring data quality.

It would seem to be useful to apply the logic of function point metrics to other critical

business topics, and create an integrated suite of functional metrics that could encompass

not only software, but the related areas of data, web sites, hardware devices, and also risk

and value.

Software and on-line data are among the most widely utilized commodities in human

history. If you consider the total usage of various commodities, the approximate global

rank in terms of overall usage would be:

1. Water

2. Salt

3. Rice

4. Wheat

5. Bread

6. Corn

7. Fish

8. Clothing

9. Shoes

10. Software

11. On-line web data

12. Alcoholic beverages

13. Electricity

 3

14. Gasoline and oil

15. Aluminum

(The sources of data for this table include a number of web sites and government tables.

The importance is not actual rankings, but the fact that software and on-line data in 2015

are used so widely that they can be included in the list.)

The expansion of software (and on-line data) to join the world’s most widely used

commodities means that there is an urgent need for better metrics and better economic

analysis.

Because of the widespread deployment of software and the millions of software

applications already developed or to be developed in the future, software economic

studies are among the most critical of any form of business analysis. Unfortunately, lack

of an integrated suite of metrics makes software economic analysis extremely difficult.

This article proposes a suite of related metrics that are based on the logic of function

points, but expanding that logic to other business and technical areas. The metrics are

hypothetical and additional research would be needed to actually develop such a metrics

suite.

POTENTIAL EXPANSION OF FUNCTIONAL METRICS TO OTHER TOPICS

In spite of the considerable success of function point metrics in improving software

quality and economic research, there are a number of important topics that still cannot be

measured well or even measured at all in some cases. Here are some areas where there is

a need for of related metrics within a broad family of functional metrics:

1. Application function point metrics

2. Component feature point metrics

3. Hardware function point metrics

4. COTS application point metrics

5. Micro function point metrics

6. Data point metrics

7. Web-site point metrics

8. Software usage point metrics

9. Service point metrics

10. Risk point metrics

11. Value point metrics

12. Security point metrics

13. Configuration point metrics (developed by IBM)

This combination of a related family of functional metrics would expand the ability to

perform economic studies of modern businesses and government operations that use

 4

software, web sites, data, and other business artifacts at the same time for the same

ultimate goals. Let us now consider each of these metrics in turn.

The Need for Application Function Point Metrics

From their first external publication outside of IBM in 1978 function point metrics have

become the de facto standard for quantifying software applications. As of 2015 the usage

of function points encompass international benchmark studies, outsource agreements,

economic analysis, quality analysis, and many other important business topics. In 2015

the governments of Brazil, Japan, Malaysia, Mexico, and South Korea now require

function point metrics for software contracts. The major topics found within function

points as originally defined by Allan Albrecht include:

 Function Points

Inputs

Outputs

Inquires

Logical files

Interfaces

Complexity adjustments

There are a number of tools available for counting function points, but human judgment

is also needed. Both IFPUG and the other major function point user groups provide

training and also examinations that lead to the position of “certified function point

analysts”.

Function points are now the most widely used metric for quantifying software application

size, for quantifying productivity and quality, and for quantifying application

development costs. There is only sparse data on application maintenance costs, but that

situation is improving. The International Software Benchmark Standards Group (ISBSG)

now includes software maintenance data. Several companies such as the Software

Improvement Group (SIG), Relativity Technologies, CAST Software, Optimyth, and

Computer Aid measure and evaluate maintainability.

It should be noted that software is treated as a taxable asset by the Internal Revenue

Service (IRS) in the United States and by most other international tax organizations.

Function point metrics are now widely used in determining the taxable value of software

when companies are bought or sold.

Note 1: In late 2011 the International Function Point Users Group (IFPUG) released

information on a new metric for non-functional requirements called SNAP. As of early

2015 there is still sparse empirical data on the volume of SNAP points relative to normal

function points in the same application. As data becomes available it will be added to

software estimating tools such as the author’s Software Risk Master ™ tool.

 5

Also function point metrics have a tendency to be troublesome for maintenance and

multi-tier software where quite a bit of work involves dealing with surrounding software

packages.

Note 2: This paper is based on function points as defined by IFPUG. There are a number

of alternative function point metrics including but not limited to:

COSMIC function points

Engineering function points

FISMA function points

Mark II function points

NESMA function points

Unadjusted function points

Story points

Use case points

These function point variations all produce different results from IFPUG function points.

Most produce larger results than IFPUG for unknown reasons.

The Need for Component Feature Point Metrics

While function points are the dominant metric for software applications, in today’s world

of 2015 applications are often created from libraries of reusable components, objects, and

other existing software segments. While some of these may have been counted via

normal function point analysis, most are of unknown size.

There is a need to extend normal function point analysis down at least one level to be

able to size reusable modules, objects, and the contents of class libraries. To avoid

confusion with the term function points, which normally apply to entire applications, it

might be better to use a different term such as “component feature points.”

 Component Feature Points

Inputs

Outputs

Inquires

Logical files

Interfaces

Complexity adjustments

Examples of the kinds of specific features that might be sized using component feature

points would include, but not be limited to:

1. Input validation (25 to 50 component feature points)

2. Output formatting (10 to 30 component feature points)

3. Query processing (3 to 15 component feature points)

4. Currency exchange rate calculation (5 to 15 component feature points)

 6

5. Inflation rate calculation (5 to 10 component feature points)

6. Compound interest calculation (5 to 25 component feature points)

7. Sensor-based input monitoring (10 to 35 component feature points)

8. Earned-value calculations (30 to 75 component feature points)

9. Internal rate of return (IRR) (5 to 15 component feature points)

10. Accounting rate of return (ARR) (5 to 15 component feature points)

The basic idea is to assemble a taxonomy of standard components that are likely to be

acquired from reusable sources rather than custom developed. In other words,

component feature points shift the logic of functional analysis from the external

applications themselves to the inner structure and anatomy of applications.

As of 2015 the total number of possible reusable components is unknown, but probably is

in the range of about 500 to 2,500. There is also a lack of a standard taxonomy for

identifying the specific features of software components. These are problems that need

additional research.

The best way to develop an effective taxonomy of application features would probably be

a forensic analysis of a sample of current software applications, with the intent of

establishing a solid taxonomy of specific features including those inserted from reusable

materials.

Component feature points would adhere to the same general counting rules as standard

function points, but would be aimed at individual modules and features that are intended

to be reused in multiple applications. Because some of the smaller components may be

below the boundary line for normal function point analyses, see the section on “micro

function points” later in this paper.

The Need for Hardware Function Point Metrics

The U.S. Navy, the U.S. Air Force, the U.S. Army and the other military services have a

significant number of complex projects that involve hardware, software, and microcode.

Several years ago the Navy posed an interesting question: “Is it possible to develop a

metric like function points for hardware projects, so that we can do integrated cost

analysis across the hardware/software barrier?”

In addition to military equipment there are thousands of products that feature embedded

software: medical devices, smart phones, GPS units; cochlear implants, hearing aids,

pacemakers, MRI devices, automobile anti-lock brakes; aircraft control systems, and

countless others. All of these hybrid devices require sizing and estimating both the

software and hardware components at the same time.

The ability to perform integrated sizing, cost, and quality studies that could deal with

software, hardware, data bases, and human service and support activities would be a

notable advance indeed. A hypothetical engineering point metric might include the

following factors:

 7

 Hardware Function points

 Inputs

 Outputs

 Constraints

 Innovations

 Algorithms

 Subcomponents

Integrated cost estimates across the hardware/software boundary would be very welcome

in many manufacturing and military domains. These hardware function points would be

utilized for embedded applications such as medical devices, digital cameras, and smart

appliances. They would also be used for weapons systems and avionics packages. They

would also be used for all complex devices such as automobile engines that use software

and hardware concurrently. Hardware function points would be a useful addition to an

overall metrics suite.

The Need for COTS Function Point Metrics

Many small corporations and some large ones buy or acquire more software than they

build. The generic name for packaged applications is “commercial off-the-shelf

software” which is usually abbreviated to COTS.

COTS packages could be sized using conventional function point analysis if vendors

wished to do this, but most do not. As of 2015 it is technically possible to size COTS

packages using pattern matching. For example the Software Risk Master (SRM) sizing

tool of Namcook Analytics LLC can size COTS software such as Windows 10, Quicken,

the Android operating system and all others. The same is true for sizing open-source

applications. The open-source business sector is growing rapidly, and many open-source

applications are now included in corporate portfolios.

The concept of pattern matching uses a formal taxonomy of applications types that

includes the class of the application (internal or external), the type (embedded software,

information technology, systems or middleware, etc.) and several other parameters. An

application to be sized is placed on the taxonomy. Applications that have the same

“pattern” on the taxonomy are usually of almost the same size in function points. The

pattern matching approach uses a combination of a standard taxonomy and mathematical

algorithms to provide a synthetic function point total, based on historical applications

whose sizes already exist. While normal function points are in the public domain, the

pattern matching approach is covered by a patent application. Some of the other metrics

in this paper may also include patentable algorithms.

The pattern matching approach substitutes historical data for manual counting, and to be

effective the patterns must be based on a formal taxonomy. Pattern matching applies

some of the principles of biological classification to software classification.

 8

A study performed by the author of the corporate portfolio of a major Fortune 500

corporation noted that the company owned software in the following volumes:

Application Types Ownership

Information systems 1,360

COTS packages 1,190

Systems software 850

Embedded applications 510

Tools (software development) 340

Manufacturing and robotics 310

End-user developed 200

Open-source 115

SaaS applications 5

TOTAL 4,880

As can be seen, COTS packages ranked number two in the corporation’s overall portfolio

and comprised 24.4% of the total portfolio. This is far too important a topic to be

excluded from sizing and economic analysis. For one thing, effective “make or buy”

analysis or determining whether to build software or acquire software packages needs the

sizes of both the COTS packages and the internal packages to ensure that features sets are

comparable. In fact both function points and component feature points would be valuable

for COTS analysis.

Note that the pattern-matching method can also size “Software as a Service” or SaaS

applications such as Google Docs. Essentially any software application can be sized

using this method so long as it can be placed on the basic taxonomy of application types.

Of course the complexity questions will have to be approximated by the person using the

sizing method, but most can be assumed to center on “average” values.

Examples of various COTS, SaaS, and open-source applications sized via pattern

matching include:

Table 1: Examples of Software Size via Pattern Matching

 Using Software Risk Master ™

Application Size in IFPUG Function Points

1. Oracle 229,344

2. Windows 10 198,050

3. Microsoft Windows XP 126,768

4. Microsoft Office 2010 93,498

5. Google docs 47,668

6. Apple I Phone 19,366

7. IBM IMS data base 18,955

 9

8. Google search engine 18,640

9. Linux 17,505

10. Child Support Payments (state) 12,546

11. Facebook 8,404

12. Mapquest 3,793

13. Android OS (original version) 1,858

14. Microsoft Excel 1,578

15. Microsoft Word 1,431

16. Laser printer driver (HP) 1,248

17. Sun Java compiler 1,185

18. Wikipedia 1,142

19. Cochlear implant (embedded) 1,041

20. Microsoft DOS circa 1998 1,022

21. Nintendo Gameboy DS 1,002

22. Casio atomic watch 933

23. SPR KnowledgePlan 883

24. Norton anti-virus 700

25. Golf handicap analysis 662

26. SPR SPQR/20 699

27. Google Gmail 590

28. Cochlear implant (embedded) 546

29. Twitter (original circa 2009) 541

30. Software Risk Master™ prototype 1 388

Right now, COTS packages and SaaS packages (and most open-source applications) are

outside the boundaries of normal function point metrics primarily because the essential

inputs for function point analysis are not provided by the vendors.

It would be useful to include COTS packages in economic studies if vendors published

the function point sizes of commercial software applications. This is unlikely to happen

in the near future. A COTS, SaaS, and open-source pattern-matching metric based on

pattern matching might include the following factors:

 COTS, SaaS, and Open-Source application points

Taxonomy

Scope

Class

 Type

 Problem complexity

 Code complexity

 Data complexity

The inclusion of COTS points is desirable for dealing with “make or buy” decisions in

which possible in-house development of software is contrasted with possible acquisition

of a commercial package.

 10

In today’s world many large and important applications are combinations of custom code,

COTS packages, open-source packages, reusable components, and objects. There is a

strong business need to be able to size these hybrid applications.

There is also a strong business need to be able to size 100% of the contents of corporate

portfolios, and almost 50% of the contents of portfolios are in the form of COTS

packages, open-source packages, SaaS services and other kinds of applications whose

developers have not commissioned normal function point analysis.

The Need for Micro Function Point Metrics

A surprising amount of software work takes place in the form of very small

enhancements and bug repairs that are below about 10 function points in size. In fact

almost 20% of the total effort devoted to software enhancements and about 90% of the

effort devoted to software bug repairs deal with small segments below 10 function points

in size.

The original function point metric had mathematical limits associated with the

complexity adjustment factors which made small applications difficult to size. Also, the

large volume of small enhancements and the even larger volume of software defect

repairs would be time consuming and expensive for normal function point analysis.

The same method of pattern matching can easily be applied to small updates and bug

repairs, and this form of sizing takes only a few minutes.

There are three possibilities for micro function points: 1) Normal function point analysis

with changes to eliminate the lower boundaries of adjustment factors; 2) Pattern

matching; 3) Backfiring or mathematical conversion from counts of logical code

statements.

 Micro Function Points using normal counts

Inputs

Outputs

Inquires

Logical files

Interfaces

Revised complexity adjustments

 Micro Function Points using pattern matching

Taxonomy

Scope

Class

 Type

 Problem complexity

 Code complexity

 Data complexity

 11

 Backfiring

Language Sample Source code

Level Languages per function

 point

1 Basic Assembly 320

2 C 160

3 COBOL 107

4 PL/I 80

5 Ada95 64

6 Java 53

7 Ruby 46

8 Oracle 40

9 Pearl 36

10 C++ 32

11 Delphi 29

12 Visual Basic 27

13 ASP NET 25

14 Eiffel 23

15 Smalltalk 21

16 IBM ADF 20

17 MUMPS 19

18 Forte 18

19 APS 17

20 TELON 16

10 AVERAGE 58

Backfiring or mathematical conversion from logical code statements is as old as function

point analysis. The first backfire results were published by Allan Albrecht in the 1970’s

based on simultaneous measurements of logical code statements and function points

within IBM.

Surprisingly, none of the function point organizations have ever analyzed backfire data.

Backfiring is not as accurate as normal function point analysis due to variations in

programming styles but it remains a popular method due the high speed and low cost of

backfiring compared to normal function point analysis..

There are published tables of ratios between logical code statements and function points

available for about 800 programming languages. In fact the number of companies and

projects that use backfiring circa 2011 is probably larger than the number of companies

that use normal function point analysis.

As an example of why micro function points are needed, a typical software bug report

when examined in situ in the software itself is usually between about 0.1 and 4.0 function

points in size: much too small for normal function point analysis.

 12

Individually each of these bugs might be ignored, but large systems such as Windows 7

or SAP can receive more than 50,000 bug reports per year. Thus the total volume of

these tiny objects can top 100,000 function points and the costs associated with

processing them can top $50,000,000 per year. There is a definite need for a rapid and

inexpensive method for including thousands of small changes into overall software cost

and economic analyses.

Since normal function point analysis tends to operate at a rate of about 400 function

points per day or 50 function points per hour, counting a typical small enhancement of 10

function points would require perhaps 12 minutes.

The pattern matching method operates more or less at a fixed speed of about 1.5 minutes

per size calculation, regardless of whether an ERP package of 300,000 function points or

an enhancement of 10 function points is being sized. Therefore pattern matching would

take about 1.5 minutes.

What would probably be a suitable solution would be to size a statistically valid sample

of several hundred small bug repairs and small enhancements, and then simply use those

values for sizing purposes. For example if an analysis of 1000 bugs finds the mean

average size to be 0.75 function points that value might be used for including small

repairs in overall economic studies.

It might be noted that the author’s Software Risk Master ™ tool can size applications

over a range that spans from less than 1 function point to more than 300,000 function

points. Further, the time required to size the application is independent of the actual size

and averages about 1 minute and 30 seconds per application.

The Need for Data Point Metrics

In addition to software, companies own huge and growing volumes of data and

information. As topics such as repositories, data warehouses, data quality, data mining,

and on-line analytical processing (OLAP) become more common, it is obvious that there

are no good metrics for sizing the volumes of information that companies own. Neither

are there good metrics for exploring data quality, the costs of creating data, migrating

data, or eventually retiring aging legacy data.

A metric similar to function points in structure but aimed at data and information rather

than software would be a valuable addition to the software domain. A hypothetical data

point metric might include the following factors:

 Data points

 Logical files

 Entities

 Relationships

 Attributes

 Inquiries

 13

 Interfaces

Surprisingly, data base and data warehouse vendors have performed no research on data

metrics. Each year more and more data is collected and stored, but there are no economic

studies of data costs, data quality, data life expectancy, and other important business

topics involving data.

If you look at the entire portfolio of a major corporation such as large bank, they

probably own about 3,000 software applications with an aggregate size of perhaps

7,500,000 function points. But the volume of data owned by the same bank would

probably 50,000,000 data points, if there were an effective data point metric in existence.

It is a known fact that the average number of software defects released to customers in

2015 is about 0.45 per function point. No one knows the average number of data errors,

but from analysis of data problems within several large companies, it is probable that data

errors in currently active data bases approach 2.5 defects per “data point” or almost four

times as many errors as software itself.

There is a very strong economic need to include data acquisition costs, data repair costs,

and data quality in corporate financial analyses. The data point metric would be probably

as useful and as widely utilized as the function point metric itself. Lack of quantification

of data size, data acquisition costs, data migration costs, and data quality are critical gaps

in corporate asset economic analysis. A data point is important enough so that it might

well be protected by a patent.

Data is already a marketable product and hundreds of companies sell data in the form of

mailing lists, financial data, tax information and the like. If data is treated as a taxable

asset by the Internal Revenue Service (IRS) then the need for a data point metric will be

critical for tax calculations, and for use in determining the asset value of data when

companies are bought or sold.

Since the theft of valuable data is now one of the most common crimes in the world, an

effective data point metric could also be used in ascertaining the value of lost or stolen

data.

The Need for Web-Site Point Metrics

In today’s business world of 2015 every significant company has a web site, and an ever-

growing amount of business is transacted using these web sites.

While function points can handle the software that lies behind the surface of web sites,

function points do not deal with web site content in the forms of graphical images,

animation, and other surface features. There is a strong business need to develop “web

site points” that would be able to show web site development costs, maintenance costs,

and web site quality.

 14

Some of the topics that would be included in “web-site points” would be:

 Web-site points

Transactions

Inquiries

Images

Text

Audio

Animation

An examination of any of today’s large and complex web sites, such as Amazon, Google,

state governments, and even small companies immediately demonstrates that sizing and

quantification are needed for many more topics than just the software that controls these

web sites.

From a rudimentary analysis of web-site economics, it appears that the cost of the content

of web sites exceeds the cost of the software controlling the web site by somewhere

between 10 to 1 and 100 to 1. Massive web sites such as Amazon are at the high-end of

this spectrum. But the essential point is that web sites need formal sizing methods and

reliable economic methods.

The software that controls the Amazon web site is probably about 18,000 function points

in size. But the total web content displayed on the Amazon site would probably top

25,000,000 web-site points if such a metric existed.

The Need for Software Usage Point Metrics

Function point metrics in all of their various flavors have been used primarily to measure

software development. But these same metrics can also be used to measure software

usage and consumption.

In order to come to grips with software usage patterns, some additional information is

needed:

Is the software used by knowledge workers such as physicians and lawyers?

Is the software used for business transactions such as sales?

Is the software used to control physical devices such as navigational instruments?

If the software used to control military weapons systems?

Table 1.0 illustrates the approximate usage patterns noted for 30 different occupation

groups last year in 2015:

 15

Table 1: Daily Software Usage by Thirty Occupation Groups

 (Size expressed in terms of IFPUG function points, version 4.2)

 Size in Number of Hours used Value to

 Occupation Groups

Function

Points Packages per Day Users

1 NSA analysts 7,500,000 60 24.00 10.00

2 Military planners 5,000,000 50 7.50 9.00

3 Astronaut (space shuttle) 3,750,000 50 24.00 10.00

4 Physicians 3,500,000 25 3.00 9.00

5 Ship captains (naval) 2,500,000 60 24.00 8.00

6 Aircraft pilots (military) 2,000,000 50 24.00 10.00

7 FBI Agents 1,250,000 15 3.00 7.00

8 Ship captains (civilian) 1,000,000 35 24.00 7.00

9 Biotech researchers 1,000,000 20 4.50 6.00

10 Airline pilots (civilian) 750,000 25 12.00 7.00

11 Movie special effects engineer 750,000 15 6.00 9.00

12 Air-traffic controllers 550,000 5 24.00 9.00

13 Attorneys 325,000 12 2.50 5.00

14 Combat officers 250,000 12 10.00 6.00

15 Accountants 175,000 10 3.00 4.00

16 Pharmacists 150,000 6 3.50 4.00

17 U.S. congress staff 125,000 15 6.00 4.00

18 Electrical engineers 100,000 25 2.50 5.00

19 Combat troops 75,000 7 18.00 6.00

20 Software engineers 50,000 20 6.50 8.00

21 Police officers 50,000 6 8.00 4.00

22 Corporate officers 50,000 10 1.50 3.00

23 Stock brokers 50,000 15 10.00 5.00

24 Project managers 35,000 15 2.00 5.00

25 IRS tax agents 35,000 12 8.00 6.00

26 Civil engineers 25,000 10 2.00 6.00

27 Airline travel reservations 20,000 3 12.00 9.00

28 Railroad routing and control 15,000 3 24.00 9.00

29 Customer support (software) 10,000 3 8.00 4.00

30 Supermarket clerks 3,000 2 7.00 4.00

 Averages 1,036,433 20 10.88 6.60

Software usage points are identical to normal function points, except that they are aimed

at consumption of software rather than production of software. Software usage patterns

play a major role in quantifying the value of many software applications. Software usage

can be calculated using either normal function point analysis or pattern matching.

 Usage Points using normal function point counts

Inputs

Outputs

Inquires

 16

Logical files

Interfaces

Revised complexity adjustments

Knowledge usage

Operational usage

Transactional usage

Indirect usage (in embedded devices)

 Usage Points using pattern matching

Taxonomy

Scope

Class

 Type

 Problem complexity

 Code complexity

 Data complexity

Knowledge usage

Operational usage

Transactional usage

Indirect usage (in embedded devices)

Usage points are not really a brand new metric but rather function points augmented by

additional information and aimed in a different direction.

Incidentally it is from examining software usage patterns that led to placing software as

number 10 on the list of widely-used commodities at the beginning of this article.

The Need for Service Point Metrics

The utility of function points for software studies has raised the question as to whether or

not something similar can be done for service groups such as customer support, human

resources, sales personnel, and even health and legal professionals.

Once software is deployed, a substantial amount of effort is devoted to responding to

customer request for support. This service effort consists of answering basic questions,

dealing with reported bugs, and making new information available to clients as it is

created.

The cost drivers of software service are based on five primary factors:

1. The size of the application in function points

2. The number of latent bugs in the application at release

3. The number of clients using the application

4. The number of translations into other national languages

5. The planned response interval for customer support contacts

 17

What would be useful would be a metric similar in structure to function points, only

aimed at service functions within large corporations. Right now, there is no easy way to

explore the lifetime costs of systems that include extensive human service components as

well as software components. A hypothetical service point metric might include the

following factors:

 Service points

 Customers (entities)

 Countries where the application is used

 Latent defects at deployment

 Desired response time for customer contacts

 Inquiries

 Reference sources

 Rules and Regulations (constraints)

Experiments with variations on the function point metric have been carried out for

software customer support groups. The results have been encouraging, but are not yet at

a point for formal publication.

The U.S. is now largely a service-oriented economy. Software has a significant amount

of total cost of ownership tied up in service-related activities.

The Need for Value Point Metrics

One of the major weaknesses of the software industry has been in the area of value

analysis and the quantification of value. All too often what passes for “value” is

essentially nothing more than cost reductions or perhaps revenue increases. While these

are certainly important topics, there are a host of other aspects of value that also need to

be examined and measured: customer satisfaction, employee morale, national security,

safety, medical value, and a host of other topics. A hypothetical value point metric might

include the following factors:

 Value points

 Safety improvement

 National security improvement

 Health and medical improvement

 Patents and intellectual property

 Risk reduction

 Synergy (compound values)

 Cost reduction

 Revenue increases

 Market share increases

 Schedule improvement

 Competitive advantages

 Customer satisfaction increase

 Staff morale increase

 18

 Mandates or statutes

Note that although cost reduction and revenue increases are both tangible value factors, a

host of other less tangible factors also need to be examined, weighted, and included in a

value point metric.

Intangible value is the current major lack of today’s methods of value analysis. There is

no good way to quantify topics such as medical value, security value, or military value.

A value point metric would assign points for: 1) Direct revenues; 2) Indirect revenues; 3)

Transaction rate improvements; 4) Operational cost reduction; 5) Secondary cost

reduction; 6) Patents and intellectual property; 7) Enterprise prestige; 8) Market share

improvements, 9) Customer satisfaction improvement; 10) Employee morale

improvements. In other words both financial and non-financial value would be assigned

value points. The sum total of value points would include both financial and non-

financial value such as medical and military value.

The Need for Risk Point Metrics

Software projects are nothing if not risky. Indeed, the observed failure rate of software

projects is higher than almost any other manufactured product. While software risk

analysis is a maturing discipline, there are still no metrics that can indicate the magnitude

of risks. Ideally, both risks and value could be analyzed together. A hypothetical value

risk point metric might include the following factors:

 Risk points

 Risks of death or injury

 Risks to national security

 Risks of property destruction

 Risks of theft or pilferage

 Risks of litigation

 Risks of business interruption

 Risks of business slow-down

 Risks of market share loss

 Risks of schedule delays

 Risks of cost overruns

 Risks of competitive actions

 Risks of customer dissatisfaction

 Risks of staff dissatisfaction

Large software projects fail almost as often as they succeed, which is a distressing

observation that has been independently confirmed.

It is interesting that project management failures in the form of optimistic estimates and

poor quality control tend to be the dominant reasons for software project failures.

 19

The bottom line is that risk analysis supported by some form of risk-point quantification

might reduce the excessive number of software project failures that are endemic to the

production of large software applications.

As it happens, there is extensive data available on software risks. A number of risks

correlate strongly to application size measured in function points. The larger the

application, the greater the number of risks will occur and the more urgent the need for

risk abatement solutions.

Risk points could be combined with value points, function points, and data points for

determining whether or not to fund large and complex software projects that might not

succeed. While function points are useful in funding decisions, the costs of data

migration and data acquisition need to be considered too, as do risk factors.

The Need for Security Points

Software and the data processed by software now control most of the major assets of the

industrialized world. All citizens now have proprietary information stored in dozens of

data bases: birth dates, social security number, bank account numbers; mortgages, debts,

credit ratings, and dozens of other confidential topics are stored in numerous government

and commercial data bases.

Hacking, worms, denial of service attacks, and identity theft are daily occurrences, and

there is no sign that they will be reduced in numbers in the future.

These facts indicate a strong need for a “security point” metric that will provide

quantification of the probable risks of both planned new applications and also legacy

applications that process vital information.

 Security points

Value of the information processed

Volume of valuable information (using data points)

Consequences of information theft or loss

Consequences of disruption or denial of service

Security flaw prevention methods

Security attack monitoring methods

Immediate responses for security attacks

Security as of 2015 is not as thorough as it should be. Hopefully the development of a

security-point metric will encourage software developers, executives, and clients to be

more proactive in avoiding security risks, and more effective in dealing with security

attacks.

The purpose of security points is two fold: one is to identify in a formal manner all of the

security risk topics; the second is to identify in a formal manager all of the known

 20

security solutions. It is obvious that security cannot be fully effective by using only

firewalls and external software to intercept viruses, worms, and other malware. Software

needs to stronger immune system that can fight off invading malware due to better

internal controls and eliminating today’s practice of transferring control and exposing

confidential information.

The Need for Configuration Points

This 13
th

 metric was not developed by the author but was provided by George Stark of

the IBM Global Technology Center in Austin, TX. IBM has been a pioneer in metrics

research since the original function point metrics were developed at IBM White Plains in

the middle 1970’s.

The configuration point metric is used to predict the work effort for deploying complex

suites of software and hardware that need to operate together. Unlike some of the prior

metrics in this report, configuration points have existed since 2006 and have been used on

a number of actual installations and seem to generate useful information.

 Configuration Points

Cabling

Software assets and configurations

Computing assets

Communication assets

External interfaces

 Value-added adjustments

Security

Installation ease

Common components

Environment complexity

Customizations

 External services

 Staff experience

When used for deploying large and complex combinations of software and devices, the

ranges of component points to date have been between about 30,000 and 70,000. When

comparing component points to standard function points, it can be seen that this metric is

clearly aimed at the problems of deploying fairly massive combinations of features.

 21

EXAMPLE OF A MULTI-METRIC ECONOMIC ANALYSIS

Because this proposed suite of metrics is hypothetical and does not actually exist as of

2015, it might be of interest to show how some of these metrics might be used. (In this

small example some of the metrics aimed at large applications such as configuration

points are not shown.) Let us consider an example of a small embedded device such as a

smart phone or a hand-held GPS that utilizes a combination of hardware, software, and

data in order to operate:

Example of Multi-Metric Economic Analysis

Development Metrics Number Cost Total

Function points 1,000 $1,000 $1,000,000

Data points 1,500 $500 $750,000

Hardware function points 750 $2,500 $1,875,000

Subtotal 3,250 $1,115 $3,625,000

Annual Maintenance metrics

Enhancements (micro function points) 150 $750 $112,500

Defects (micro function points) 750 $500 $375,000

Service points 5,000 $125 $625,000

Data maintenance 125 $250 $31,250

Hardware maintenance 200 $750 $150,000

Annual Subtotal 6,225 $179 $1,112,500

TOTAL COST OF OWNERSHIP

(TCO)

(Development + 5 years of usage)

Development 3,250 $1,115 $3,625,000

Maintenance, enhancement, service 29,500 $189 $5,562,500

Data maintenance 625 $250 $156,250

Hardware maintenance 1,000 $750 $750,000

Application Total TCO 34,375 $294 $10,093,750

Risk and Value Metrics

Risk points 2,000 $1,250 $2,500,000

Security points 1,000 $2,000 $2,000,000

Subtotal 3,000 $3,250 $4,500,000

Value points 45,000 $2,000 $90,000,000

NET VALUE 10,625 $7,521 $79,906,250

RETURN ON INVESTMENT (ROI) $8.92

 22

As can be seen, normal function points are used for the software portion of this product.

But since it also has a hardware component and uses data, hardware points and data

points are part of the cost of the application.

While smart phones are security risks, GPS devices are not usually subject to hacking in a

civilian context. Therefore the risk and security totals are not high.

Value points would be based on a combination of direct revenues, indirect revenues for

training and peripherals. There might also be drag-along revenues for additional services

such as applications.

Note that software development itself is less than one tenth of the total cost of ownership

(TCO). Note also that economic value should be based on total cost of ownership for the

entire product, and not just the software component.

THE PROBABLE EFFORT AND SKILL SETS FOR CREATING A SUITE OF

FUNCTIONAL METRICS

Allan Albrecht, John Gaffney, and other IBM colleagues worked on the development of

function point metrics for several years before reaching a final version that achieved

consistently good results.

Each of the proposed metrics in this paper would probably require a team that includes

both function point experts and domain experts in topics such as data structures, hardware

engineering, accounting, and other relevant topics. A single inventor might be able to

derive some of these metrics, but probably a multi-disciplinary team would have more

success.

Because function points already exists, creating a family of metrics that utilize similar

logic would not be trivial, but would probably not be quite as difficult as the original

development of function points in IBM in the 1970’s. Following are the probable team

sizes, skill sets, and schedules for creating a family of functional metrics:

 Metric and Skills Team Size Schedule

 Months

1. Application function point metrics* 6 24

Software engineering

Accounting and finance

Statistical analysis

2. Component feature point metrics** 4 12

Function point analysis

Software engineering

Taxonomy construction

 23

3. Hardware function point metrics 6 18

Function points

Electrical engineering

Mechanical engineering

Aeronautical engineering

Accounting and finance

4. COTS application point metrics*** 1 6

Function point analysis

Taxonomy construction

Software engineering

5. Micro function points** 3 3

Function point analysis

Maintenance of software

6. Data point metrics 6 18

Function point analysis

Data structure analysis

Data normalization methods

Accounting and finance

7. Web-site point metrics 6 18

Function point analysis

Web site design

Web content sources

Graphical design

Accounting and finance

8. Software usage point metrics* 1 3

Function point analysis

Accounting and finance

9. Service point metrics 4 9

Function point analysis

Info. Tech. Infrastructure. Library

10. Risk point metrics 4 6

Function point analysis

Software risks

Software risk abatement

Accounting and finance

11. Value point metrics 6 9

Function point analysis

 24

Accounting and finance

Software engineering

Economic modeling

Multi-variate analysis

12. Security point metrics 6 6

Software security principles

Costs of security breaches

Function point analysis

13. Configuration points* NA NA

(Developed by IBM)

TOTAL 53 132

 * Metric currently exists

 ** Metric exists in prototype form

*** Metric is covered by a patent application

As can be seen, the set of possible functional metrics discussed in this paper requires

substantial research. This kind of research would normally be performed either by a

university or by the research division of a major company such as IBM, Microsoft,

Google, Oracle, and the like. Indeed configuration points are a recent metric developed

by IBM.

For example, as a data base company Oracle should certainly be interested in data point

metrics and should already have data about migration costs, data quality, and the like.

But as of 2015 data base and ERP installation routinely cost more than expected, while

data migration efforts routinely run late and encounter data quality problems. Data

economics remains a critical unknown in corporate economic studies.

The purpose of this paper is to illustrate that while function points are valuable metrics

for software economic analysis, software does not exist in a vacuum and many other

business and technical topics would benefit from the logic of functional metrics.

The most critical gaps in metrics as of 2015 are the lack of effective metrics for dealing

with data size and data quality, and the lack of effective metrics that can integrate

tangible and intangible value.

It goes without saying that the suite of metrics cannot be developed in isolation. They

need to be considered as a set, and they also need to be commensurate with standard

function points so that the various functional metrics can be dealt with mathematically

and be used for statistical analysis as a combined set of related metrics.

 25

The 13 proposed metrics discussed in this paper are not necessarily the only additional

metrics that might useful. The fundamental point is that the function point community

should expand their vision from software alone and begin to address other critical

business problems that lack effective metrics and measurement techniques.

METRICS GROWTH AND CHANGE OVER MULTIPLE YEAR PERIODS

A topic that is not covered well in the metrics and function point literature is that of

continuous growth and change in size. Software requirements tend to grow at rates of

about 1% per month during development. After release, software applications continue

to grow at about 8% per calendar year. Every few years commercial software will add

“mid-life kickers” or big increases in functionality, which of course adds to function

point totals.

Software Risk Master (SRM) uses a patent-pending sizing engine that predicts and

accumulates size from the start of requirements through up to 10 years of post-release

maintenance and enhancements.

Although this article concentrates on quality and the initial release of a software

application, the Software Risk Master™ sizing algorithms actually create 15 size

predictions. The initial prediction is for the nominal size at the end of requirements.

SRM also predicts requirements creep and deferred functions for the initial release. After

the first release SRM predicts application growth for a 10 year period.

To illustrate the full set of SRM size predictions, the following table shows a sample

application with a nominal starting size of 10,000 function points. All of the values are in

round numbers to make the patterns of growth clear:

 26

 Software Risk Master™ (SRM) Multi-Year Sizing

 Copyright © 2011 by Capers Jones.

 Patent application 61434091. February 2011.

 Nominal application size

 in IFPUG function points 10,000

 Function

 Points

1 Size at end of requirements 10,000

2 Size of requirement creep 2,000

3 Size of planned delivery 12,000

4 Size of deferred functions -4,800

5 Size of actual delivery 7,200

6 Year 1 12,000

7 Year 2 13,000

8 Year 3 14,000

9 Year 4 17,000

10 Year 5 18,000

11 Year 6 19,000

12 Year 7 20,000

13 Year 8 23,000

14 Year 9 24,000

15 Year 10 25,000

As can be seen from the table software applications do not have a single fixed size, but

continue to grow and change for as long as they are being used by customers or clients.

Namcook Analytics and Software Risk Master (SRM) re normalize productivity and

quality data on an annual basis due to changes in application size over time.

SUMMARY AND CONCLUSIONS

The value of function point metrics for economic analysis of software applications is

good enough to suggest that the same logic might usefully be applied to other business

topics which are difficult to measure.

The two most difficult measurement topics as of 2015 are data and value. Data lacks any

metrics whatsoever, and there is no reliable information on data costs or data quality.

Value has metrics for revenues and cost reduction, but no effective metrics for handling

non-financial value such as medical value, military value, and many others.

 27

REFERENCES AND READINGS

DeMarco, Tom; Why Does Software Cost So Much?; Dorset House, New York, NY;

ISBN 0-9932633-34-X; 1995; 237 pages.

Fleming, Quentin W. & Koppelman, Joel M.; Earned Value Project Management; 2
nd

edition; Project Management Institute, NY; ISBN 10 1880410273; 2000; 212 pages.

 Gack, Gary; Managing the Black Hole: The Executive’s Guide to Managing Risk; The

Business Expert Publisher; Thomason, GA; 2010; ISBN-10-935602-01-2.

Galorath, Daniel D. & Evans, Michael W.; Software Sizing, Estimation, and Risk

Management: When Performance is Measured Performance Improves; Auerbach,

Philadelphia, AP; ISBN 10-0849335930; 2006; 576 pages.

Garmus, David & Herron, David; Function Point Analysis; Addison Wesley, Boston,

MA; ISBN 0-201069944-3; 363 pages; 2001.

Garmus, David & Herron, David; Measuring the Software Process: A Practical Guide to

Functional Measurement; Prentice Hall, Englewood Cliffs, NJ; 1995.

Harris, Michael; Herron, David; Iwanicki, Stasia; The Business Value of IT; CRC Press;

an Auerbach Book; 2008; ISBN13: 978-1-4200-6474-2.

Hill, Peter (editor); Practical Software Estimation; McGraw Hill, NY; 2011; ISBN 978-0-

07-17191-5.

Jones, Capers; The Technical and Social History of Software Engineering, Addison

Wesley, 2014.

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality; Addison

Wesley Longman, Boston, MA; ISBN 10: 0-13-258220—1; 2011; 585 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York, NY; ISBN

978-0-07-162161-8; 2010; 660 pages.

Jones, Capers; Provisional Patent Application 126203 00002; January 19, 2011; A

Method of Rapid Early Sizing for Software Applications; Capers Jones & Associates

LLC.

Jones, Capers; A New Business Model for Function Point Metrics; Version 9.0; May 12,

2010; Capers Jones & Associates LLC.

Jones, Capers; Sizing Up Software; Scientific American Magazine; New York NY; Dec.

1998, Vol. 279 No. 6; December 1998; pp 104-109.

 28

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN

978-0-07-150244-3; 575 pages; 3
rd

 edition (March 2008).

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley

Longman, Boston, MA, 2000; 659 pages.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;

Version 6; Software Productivity Research, Burlington, MA; June 2006; 54 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2
nd

 edition, 2007;

644 pages; ISBN13: 978- 0-07-148300-1.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2
nd

 edition;

Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Kaplan, Robert S & Norton, David B.; The Balanced Scorecard; Harvard University

Press, Boston, MA; ISBN 1591391342; 2004.

McConnell, Steve; Software Estimation – Demystifying the Black Art; Microsoft Press,

Redmond, Wa; ISBN 10: 0-7356-0535-1; 2006.

Parthasarathy, M.A.; Practical Software Estimation – Function Point Methods for

Insourced and Outsourced Projects; Addison Wesley, Boston, MA; ISBN 0-321-

43910-4; 2007; 388 pages.

Stark, George; personal communication on configuration points; IBM Global Technology

Center; Austin, TX; March 2006.

Strassmann, Paul; The Squandered Computer; Information Economics Press, Stamford,

CT; 1997.

Stutzke, Richard D.; Estimating Software-Intensive Systems – Projects, Products, and

Processes; Addison Wesley, Boston, MA; ISBN 0-301-70312-2; 2005; 917 pages.

 29

 30

